# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Function: test network Usage: python test_network_main.py --net lenet --target Ascend """ import argparse import numpy as np from models.alexnet import AlexNet from models.lenet import LeNet from models.resnetv1_5 import resnet50 import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def train(net, data, label): learning_rate = 0.01 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True) net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() res = train_network(data, label) print(res) assert res def test_resnet50(): data = Tensor(np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = resnet50(32, 10) train(net, data, label) def test_lenet(): data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = LeNet() train(net, data, label) def test_alexnet(): data = Tensor(np.ones([32, 3, 227, 227]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = AlexNet() train(net, data, label) parser = argparse.ArgumentParser(description='MindSpore Testing Network') parser.add_argument('--net', default='resnet50', type=str, help='net name') parser.add_argument('--device', default='Ascend', type=str, help='device target') if __name__ == "__main__": args = parser.parse_args() context.set_context(device_target=args.device) if args.net == 'resnet50': test_resnet50() elif args.net == 'lenet': test_lenet() elif args.net == 'alexnet': test_alexnet() else: print("Please add net name like --net lenet")