# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor import mindspore.context as context from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class Net(nn.Cell): def __init__(self, keep_prob): super(Net, self).__init__() self.drop = P.Dropout(keep_prob) def construct(self, x_): return self.drop(x_) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dropout(): x_shape = [32, 16, 2, 5] x = np.ones(x_shape).astype(np.float32) keep_prob = 0.4 dropout = Net(keep_prob) tx = Tensor(x) output, mask = dropout(tx) # check output output_np = output.asnumpy() elem_count = x.size nonzero_count = np.count_nonzero(output_np) assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1)) output_sum = np.sum(output_np) x_sum = np.sum(x) assert abs(output_sum - x_sum)/x_sum < 0.1 # check mask mask_np = mask.asnumpy() mask_sum = np.sum(mask_np) assert np.count_nonzero(mask_np) == nonzero_count assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1 class DropoutDynamic(nn.Cell): def __init__(self, keep_prob): super(DropoutDynamic, self).__init__() self.test_dynamic = inner.GpuConvertToDynamicShape() self.drop = P.Dropout(keep_prob) def construct(self, x): x = self.test_dynamic(x) return self.drop(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dropout_dynamic(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_1 = np.ones([32, 16, 2, 5]).astype(np.float32) x_2 = np.ones([32, 16, 2, 5, 6]).astype(np.float32) keep_prob = 0.4 net = DropoutDynamic(keep_prob) output_1, mask_1 = net(Tensor(x_1)) elem_count_1 = x_1.size nonzero_count_1 = np.count_nonzero(output_1.asnumpy()) assert (elem_count_1 * (keep_prob - 0.1)) < nonzero_count_1 < (elem_count_1 * (keep_prob + 0.1)) output_sum_1 = np.sum(output_1.asnumpy()) x_sum_1 = np.sum(x_1) assert abs(output_sum_1 - x_sum_1)/x_sum_1 < 0.1 mask_sum_1 = np.sum(mask_1.asnumpy()) assert np.count_nonzero(mask_1.asnumpy()) == nonzero_count_1 assert abs(mask_sum_1 - nonzero_count_1)/nonzero_count_1 < 0.1 output_2, mask_2 = net(Tensor(x_2)) elem_count_2 = x_2.size nonzero_count_2 = np.count_nonzero(output_2.asnumpy()) assert (elem_count_2 * (keep_prob - 0.1)) < nonzero_count_2 < (elem_count_2 * (keep_prob + 0.1)) output_sum_2 = np.sum(output_2.asnumpy()) x_sum_2 = np.sum(x_2) assert abs(output_sum_2 - x_sum_2)/x_sum_2 < 0.1 mask_sum_2 = np.sum(mask_2.asnumpy()) assert np.count_nonzero(mask_2.asnumpy()) == nonzero_count_2 assert abs(mask_sum_2 - nonzero_count_2)/nonzero_count_2 < 0.1