# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## train and test lenet example ######################## 1. train lenet and get network model files(.ckpt) : python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data 2. test lenet according to model file: python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data --mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt """ import os import argparse from config import mnist_cfg as cfg import mindspore.dataengine as de import mindspore.nn as nn from mindspore.model_zoo.lenet import LeNet5 from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train import Model import mindspore.ops.operations as P import mindspore.transforms.c_transforms as C from mindspore.transforms import Inter from mindspore.nn.metrics import Accuracy from mindspore.ops import functional as F from mindspore.common import dtype as mstype class CrossEntropyLoss(nn.Cell): """ Define loss for network """ def __init__(self): super(CrossEntropyLoss, self).__init__() self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) loss = self.cross_entropy(logits, label)[0] loss = self.mean(loss, (-1,)) return loss def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test """ # define dataset ds1 = de.MnistDataset(data_path) # apply map operations on images ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32)) ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width), interpolation=Inter.LINEAR), num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081), num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0), num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers) # apply DatasetOps ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore MNIST Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'], help='implement phase, set to train or test') parser.add_argument('--data_path', type=str, default="./MNIST_Data", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\ path where the trained ckpt file') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) network = LeNet5(cfg.num_classes) network.set_train() # net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon net_loss = CrossEntropyLoss() net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) if args.mode == 'train': # train ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size, repeat_size=cfg.epoch_size) print("============== Starting Training ==============") model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False) elif args.mode == 'test': # test print("============== Starting Testing ==============") param_dict = load_checkpoint(args.ckpt_path) load_param_into_net(network, param_dict) ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1) acc = model.eval(ds_eval, dataset_sink_mode=False) print("============== Accuracy:{} ==============".format(acc)) else: raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))