# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """maskrcnn testing script.""" import os import pytest import numpy as np from model_zoo.official.cv.maskrcnn.src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 from model_zoo.official.cv.maskrcnn.src.config import config from mindspore import Tensor, context, export context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_maskrcnn_export(): """ export maskrcnn air. """ net = Mask_Rcnn_Resnet50(config=config) net.set_train(False) bs = config.test_batch_size img = Tensor(np.zeros([bs, 3, 768, 1280], np.float16)) img_metas = Tensor(np.zeros([bs, 4], np.float16)) gt_bboxes = Tensor(np.zeros([bs, 128, 4], np.float16)) gt_labels = Tensor(np.zeros([bs, 128], np.int32)) gt_num = Tensor(np.zeros([bs, 128], np.bool)) gt_mask = Tensor(np.zeros([bs, 128], np.bool)) input_data = [img, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask] export(net, *input_data, file_name="maskrcnn", file_format="AIR") file_name = "maskrcnn.air" assert os.path.exists(file_name) os.remove(file_name) if __name__ == '__main__': test_maskrcnn_export()