# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test topk""" import math import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import TopKCategoricalAccuracy, Top1CategoricalAccuracy, Top5CategoricalAccuracy def test_type_topk(): with pytest.raises(TypeError): TopKCategoricalAccuracy(2.1) def test_value_topk(): with pytest.raises(ValueError): TopKCategoricalAccuracy(-1) def test_input_topk(): x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.3, 0.1, 0.5, 0.1, 0.], [0.9, 0.6, 0.2, 0.01, 0.3]])) topk = TopKCategoricalAccuracy(3) topk.clear() with pytest.raises(ValueError): topk.update(x) def test_topk(): """test_topk""" x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.], [0.9, 0.6, 0.2, 0.01, 0.3]])) y = Tensor(np.array([2, 0, 1])) y2 = Tensor(np.array([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]])) topk = TopKCategoricalAccuracy(3) topk.clear() topk.update(x, y) result = topk.eval() result2 = topk(x, y2) assert math.isclose(result, 2 / 3) assert math.isclose(result2, 2 / 3) def test_zero_topk(): topk = TopKCategoricalAccuracy(3) topk.clear() with pytest.raises(RuntimeError): topk.eval() def test_top1(): """test_top1""" x = Tensor(np.array([[0.2, 0.5, 0.2, 0.1, 0.], [0.1, 0.35, 0.25, 0.2, 0.1], [0.9, 0.1, 0, 0., 0]])) y = Tensor(np.array([2, 0, 0])) y2 = Tensor(np.array([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]])) topk = Top1CategoricalAccuracy() topk.clear() topk.update(x, y) result = topk.eval() result2 = topk(x, y2) assert math.isclose(result, 1 / 3) assert math.isclose(result2, 1 / 3) def test_top5(): """test_top5""" x = Tensor(np.array([[0.15, 0.4, 0.1, 0.05, 0., 0.2, 0.1], [0.1, 0.35, 0.25, 0.2, 0.1, 0., 0.], [0., 0.5, 0.2, 0.1, 0.1, 0.1, 0.]])) y = Tensor(np.array([2, 0, 0])) y2 = Tensor(np.array([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]])) topk = Top5CategoricalAccuracy() topk.clear() topk.update(x, y) result = topk.eval() result2 = topk(x, y2) assert math.isclose(result, 2 / 3) assert math.isclose(result2, 2 / 3)