# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Warpctc evaluation""" import os import math as m import argparse from mindspore import context from mindspore.common import set_seed from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.loss import CTCLoss from src.config import config as cf from src.dataset import create_dataset from src.warpctc import StackedRNN, StackedRNNForGPU from src.metric import WarpCTCAccuracy set_seed(1) parser = argparse.ArgumentParser(description="Warpctc training") parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.") parser.add_argument("--checkpoint_path", type=str, default=None, help="checkpoint file path, default is None") parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='Running platform, choose from Ascend, GPU, and default is Ascend.') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False) if args_opt.platform == 'Ascend': device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) if __name__ == '__main__': max_captcha_digits = cf.max_captcha_digits input_size = m.ceil(cf.captcha_height / 64) * 64 * 3 # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, batch_size=cf.batch_size, device_target=args_opt.platform) step_size = dataset.get_dataset_size() loss = CTCLoss(max_sequence_length=cf.captcha_width, max_label_length=max_captcha_digits, batch_size=cf.batch_size) if args_opt.platform == 'Ascend': net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size) else: net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define model model = Model(net, loss_fn=loss, metrics={'WarpCTCAccuracy': WarpCTCAccuracy(args_opt.platform)}) # start evaluation res = model.eval(dataset, dataset_sink_mode=args_opt.platform == 'Ascend') print("result:", res, flush=True)