# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test_precision""" import math import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import Precision def test_classification_precision(): """test_classification_precision""" x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]])) metric = Precision('classification') metric.clear() metric.update(x, y) precision = metric.eval() precision2 = metric(x, y2) assert np.equal(precision, np.array([0.5, 1])).all() assert np.equal(precision2, np.array([0.5, 1])).all() def test_multilabel_precision(): x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])) y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]])) metric = Precision('multilabel') metric.clear() metric.update(x, y) precision = metric.eval() assert np.equal(precision, np.array([1, 2 / 3, 1])).all() def test_average_precision(): x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])) y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]])) metric = Precision('multilabel') metric.clear() metric.update(x, y) precision = metric.eval(True) assert math.isclose(precision, (1 + 2 / 3 + 1) / 3) def test_num_precision(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y = Tensor(np.array([1, 0])) metric = Precision('classification') metric.clear() with pytest.raises(ValueError): metric.update(x, y)