# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ This is the test module for mindrecord """ import collections import json import os import re import string import mindspore.dataset.transforms.vision.c_transforms as vision import numpy as np import pytest from mindspore.dataset.transforms.vision import Inter from mindspore import log as logger import mindspore.dataset as ds from mindspore.mindrecord import FileWriter FILES_NUM = 4 CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord" CV_DIR_NAME = "../data/mindrecord/testImageNetData" @pytest.fixture def add_and_remove_cv_file(): """add/remove cv file""" paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0')) for x in range(FILES_NUM)] for x in paths: if os.path.exists("{}".format(x)): os.remove("{}".format(x)) if os.path.exists("{}.db".format(x)): os.remove("{}.db".format(x)) writer = FileWriter(CV_FILE_NAME, FILES_NUM) data = get_data(CV_DIR_NAME, True) cv_schema_json = {"id": {"type": "int32"}, "file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}} writer.add_schema(cv_schema_json, "img_schema") writer.add_index(["file_name", "label"]) writer.write_raw_data(data) writer.commit() yield "yield_cv_data" for x in paths: os.remove("{}".format(x)) os.remove("{}.db".format(x)) def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 sampler = ds.PKSampler(2) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 6 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- item[file_name]: \ {}------------------------".format("".join([chr(x) for x in item["file_name"]]))) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 sampler = ds.PKSampler(3, None, True) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 9 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- item[file_name]: \ {}------------------------".format("".join([chr(x) for x in item["file_name"]]))) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 def test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 sampler = ds.PKSampler(5, None, True) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 15 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info("-------------- item[file_name]: \ {}------------------------".format("".join([chr(x) for x in item["file_name"]]))) logger.info("-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 indices = [1, 2, 3, 5, 7] sampler = ds.SubsetRandomSampler(indices) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 5 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info( "-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info( "-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info( "-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info( "-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 5 def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 indices = [1, 2, 2, 5, 7, 9] sampler = ds.SubsetRandomSampler(indices) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 6 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info( "-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info( "-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info( "-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info( "-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 6 def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 indices = [] sampler = ds.SubsetRandomSampler(indices) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 0 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info( "-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info( "-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info( "-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info( "-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 0 def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 indices = [1, 2, 4, 11, 13] sampler = ds.SubsetRandomSampler(indices) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 5 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info( "-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info( "-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info( "-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info( "-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 5 def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file): """tutorial for cv minderdataset.""" columns_list = ["data", "file_name", "label"] num_readers = 4 indices = [1, 2, 4, -1, -2] sampler = ds.SubsetRandomSampler(indices) data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, sampler=sampler) assert data_set.get_dataset_size() == 5 num_iter = 0 for item in data_set.create_dict_iterator(): logger.info( "-------------- cv reader basic: {} ------------------------".format(num_iter)) logger.info( "-------------- item[data]: {} -----------------------------".format(item["data"])) logger.info( "-------------- item[file_name]: {} ------------------------".format(item["file_name"])) logger.info( "-------------- item[label]: {} ----------------------------".format(item["label"])) num_iter += 1 assert num_iter == 5 def get_data(dir_name, sampler=False): """ usage: get data from imagenet dataset params: dir_name: directory containing folder images and annotation information """ if not os.path.isdir(dir_name): raise IOError("Directory {} not exists".format(dir_name)) img_dir = os.path.join(dir_name, "images") if sampler: ann_file = os.path.join(dir_name, "annotation_sampler.txt") else: ann_file = os.path.join(dir_name, "annotation.txt") with open(ann_file, "r") as file_reader: lines = file_reader.readlines() data_list = [] for i, line in enumerate(lines): try: filename, label = line.split(",") label = label.strip("\n") with open(os.path.join(img_dir, filename), "rb") as file_reader: img = file_reader.read() data_json = {"id": i, "file_name": filename, "data": img, "label": int(label)} data_list.append(data_json) except FileNotFoundError: continue return data_list