# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for yolo_v3""" import os import argparse import time from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.model_zoo.yolov3 import yolov3_resnet18, YoloWithEval from dataset import create_yolo_dataset, data_to_mindrecord_byte_image from config import ConfigYOLOV3ResNet18 from util import metrics def yolo_eval(dataset_path, ckpt_path): """Yolov3 evaluation.""" ds = create_yolo_dataset(dataset_path, is_training=False) config = ConfigYOLOV3ResNet18() net = yolov3_resnet18(config) eval_net = YoloWithEval(net, config) print("Load Checkpoint!") param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) eval_net.set_train(False) i = 1. total = ds.get_dataset_size() start = time.time() pred_data = [] print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment.") for data in ds.create_dict_iterator(): img_np = data['image'] image_shape = data['image_shape'] annotation = data['annotation'] eval_net.set_train(False) output = eval_net(Tensor(img_np), Tensor(image_shape)) for batch_idx in range(img_np.shape[0]): pred_data.append({"boxes": output[0].asnumpy()[batch_idx], "box_scores": output[1].asnumpy()[batch_idx], "annotation": annotation}) percent = round(i / total * 100, 2) print(' %s [%d/%d]' % (str(percent) + '%', i, total), end='\r') i += 1 print(' %s [%d/%d] cost %d ms' % (str(100.0) + '%', total, total, int((time.time() - start) * 1000)), end='\n') precisions, recalls = metrics(pred_data) print("\n========================================\n") for i in range(config.num_classes): print("class {} precision is {:.2f}%, recall is {:.2f}%".format(i, precisions[i] * 100, recalls[i] * 100)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Yolov3 evaluation') parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--mindrecord_dir", type=str, default="./Mindrecord_eval", help="Mindrecord directory. If the mindrecord_dir is empty, it wil generate mindrecord file by" "image_dir and anno_path. Note if mindrecord_dir isn't empty, it will use mindrecord_dir " "rather than image_dir and anno_path. Default is ./Mindrecord_eval") parser.add_argument("--image_dir", type=str, default="", help="Dataset directory, " "the absolute image path is joined by the image_dir " "and the relative path in anno_path.") parser.add_argument("--anno_path", type=str, default="", help="Annotation path.") parser.add_argument("--ckpt_path", type=str, required=True, help="Checkpoint path.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) context.set_context(enable_task_sink=True, enable_loop_sink=True, enable_mem_reuse=True, enable_auto_mixed_precision=False) # It will generate mindrecord file in args_opt.mindrecord_dir, # and the file name is yolo.mindrecord0, 1, ... file_num. if not os.path.isdir(args_opt.mindrecord_dir): os.makedirs(args_opt.mindrecord_dir) prefix = "yolo.mindrecord" mindrecord_file = os.path.join(args_opt.mindrecord_dir, prefix + "0") if not os.path.exists(mindrecord_file): if os.path.isdir(args_opt.image_dir) and os.path.exists(args_opt.anno_path): print("Create Mindrecord") data_to_mindrecord_byte_image(args_opt.image_dir, args_opt.anno_path, args_opt.mindrecord_dir, prefix=prefix, file_num=8) print("Create Mindrecord Done, at {}".format(args_opt.mindrecord_dir)) else: print("image_dir or anno_path not exits") print("Start Eval!") yolo_eval(mindrecord_file, args_opt.ckpt_path)