# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test optimizer """ import numpy as np import pytest from mindspore import Tensor from mindspore.nn.optim import Optimizer, SGD, Adam, AdamWeightDecay, AdamWeightDecayDynamicLR from mindspore.common.parameter import Parameter class IterableObjc: def __iter__(self): cont = 0 while cont < 3: cont += 1 yield Parameter(Tensor(cont), name="cont") params = IterableObjc() class TestOptimizer(): def test_init(self): Optimizer(0.5, params) with pytest.raises(ValueError): Optimizer(-0.5, params) def test_construct(self): opt_2 = Optimizer(0.5, params) with pytest.raises(NotImplementedError): opt_2.construct() class TestAdam(): """ TestAdam definition """ def test_init(self): Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0) def test_construct(self): with pytest.raises(TypeError): gradient = Tensor(np.zeros([1, 2, 3])) adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0) adam.construct(gradient) class TestSGD(): """ TestSGD definition """ def test_init(self): with pytest.raises(ValueError): SGD(params, learning_rate=0.1, momentum=-0.1, dampening=0, weight_decay=0, nesterov=False) with pytest.raises(ValueError): SGD(params, learning_rate=0.12, momentum=-0.1, dampening=0, weight_decay=0, nesterov=False) SGD(params) class TestNullParam(): """ TestNullParam definition """ def test_optim_init(self): with pytest.raises(TypeError): Optimizer(0.1, None) def test_AdamWightDecay_init(self): with pytest.raises(TypeError): AdamWeightDecay(None) def test_AdamWeightDecayDynamicLR_init(self): with pytest.raises(TypeError): AdamWeightDecayDynamicLR(None, 10) def test_Sgd_init(self): with pytest.raises(TypeError): SGD(None) class TestUnsupportParam(): """ TestUnsupportParam definition """ def test_optim_init(self): with pytest.raises(ValueError): Optimizer(0.1, (1, 2, 3)) def test_AdamWightDecay_init(self): with pytest.raises(TypeError): AdamWeightDecay(9) def test_AdamWeightDecayDynamicLR_init(self): with pytest.raises(TypeError): AdamWeightDecayDynamicLR(0.5, 10) def test_Sgd_init(self): with pytest.raises(TypeError): paramsTensor = Tensor(np.zeros([1, 2, 3])) SGD(paramsTensor)