# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Geometric. """ import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_arguments(): """ Args passing during initialization. """ g = msd.Geometric() assert isinstance(g, msd.Distribution) g = msd.Geometric([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32) assert isinstance(g, msd.Distribution) def test_prob(): """ Invalid probability. """ with pytest.raises(ValueError): msd.Geometric([-0.1], dtype=dtype.int32) with pytest.raises(ValueError): msd.Geometric([1.1], dtype=dtype.int32) class GeometricProb(nn.Cell): """ Geometric distribution: initialize with probs. """ def __init__(self): super(GeometricProb, self).__init__() self.g = msd.Geometric(0.5, dtype=dtype.int32) def construct(self, value): prob = self.g('prob', value) log_prob = self.g('log_prob', value) cdf = self.g('cdf', value) log_cdf = self.g('log_cdf', value) sf = self.g('survival_function', value) log_sf = self.g('log_survival', value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_geometric_prob(): """ Test probability functions: passing value through construct. """ net = GeometricProb() value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class GeometricProb1(nn.Cell): """ Geometric distribution: initialize without probs. """ def __init__(self): super(GeometricProb1, self).__init__() self.g = msd.Geometric(dtype=dtype.int32) def construct(self, value, probs): prob = self.g('prob', value, probs) log_prob = self.g('log_prob', value, probs) cdf = self.g('cdf', value, probs) log_cdf = self.g('log_cdf', value, probs) sf = self.g('survival_function', value, probs) log_sf = self.g('log_survival', value, probs) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_geometric_prob1(): """ Test probability functions: passing value/probs through construct. """ net = GeometricProb1() value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32) probs = Tensor([0.5], dtype=dtype.float32) ans = net(value, probs) assert isinstance(ans, Tensor) class GeometricKl(nn.Cell): """ Test class: kl_loss between Geometric distributions. """ def __init__(self): super(GeometricKl, self).__init__() self.g1 = msd.Geometric(0.7, dtype=dtype.int32) self.g2 = msd.Geometric(dtype=dtype.int32) def construct(self, probs_b, probs_a): kl1 = self.g1('kl_loss', 'Geometric', probs_b) kl2 = self.g2('kl_loss', 'Geometric', probs_b, probs_a) return kl1 + kl2 def test_kl(): """ Test kl_loss function. """ ber_net = GeometricKl() probs_b = Tensor([0.3], dtype=dtype.float32) probs_a = Tensor([0.7], dtype=dtype.float32) ans = ber_net(probs_b, probs_a) assert isinstance(ans, Tensor) class GeometricCrossEntropy(nn.Cell): """ Test class: cross_entropy of Geometric distribution. """ def __init__(self): super(GeometricCrossEntropy, self).__init__() self.g1 = msd.Geometric(0.3, dtype=dtype.int32) self.g2 = msd.Geometric(dtype=dtype.int32) def construct(self, probs_b, probs_a): h1 = self.g1('cross_entropy', 'Geometric', probs_b) h2 = self.g2('cross_entropy', 'Geometric', probs_b, probs_a) return h1 + h2 def test_cross_entropy(): """ Test cross_entropy between Geometric distributions. """ net = GeometricCrossEntropy() probs_b = Tensor([0.3], dtype=dtype.float32) probs_a = Tensor([0.7], dtype=dtype.float32) ans = net(probs_b, probs_a) assert isinstance(ans, Tensor) class GeometricBasics(nn.Cell): """ Test class: basic mean/sd/mode/entropy function. """ def __init__(self): super(GeometricBasics, self).__init__() self.g = msd.Geometric([0.3, 0.5], dtype=dtype.int32) def construct(self): mean = self.g('mean') sd = self.g('sd') var = self.g('var') mode = self.g('mode') entropy = self.g('entropy') return mean + sd + var + mode + entropy def test_bascis(): """ Test mean/sd/mode/entropy functionality of Geometric distribution. """ net = GeometricBasics() ans = net() assert isinstance(ans, Tensor)