# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Dataset help for minddata dataset""" from mindspore._checkparam import check_bool from mindspore.parallel._utils import _get_device_num, _get_parallel_mode from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \ _to_full_shapes from mindspore.train.parallel_utils import ParallelMode class DatasetHelper: """ Help function to use the Minddata dataset. According to different context, change the iter of dataset, to use the same for loop in different context. Note: The iter of DatasetHelper will give one epoch data. Args: dataset (DataSet): The dataset. dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host. Default: True. Examples: >>> dataset_helper = DatasetHelper(dataset) >>> for inputs in dataset_helper: >>> outputs = network(*inputs) """ def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0): check_bool(dataset_sink_mode) self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order) def __iter__(self): return self.iter.__iter__() # A temp solution for loop sink. Delete later def types_shapes(self): """Get the types and shapes from dataset on current config.""" return self.iter.types_shapes() def loop_size(self): """Get loop_size for every iteration.""" return self.iter.loop_size class _DatasetIter: """Base iter for dataset help""" def __init__(self, dataset): self.loop_size = 1 if not hasattr(dataset, '__ME_INITED__'): if not hasattr(dataset, '__loop_size__'): self.loop_size = dataset.get_dataset_size() else: self.loop_size = dataset.__loop_size__ dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name self.ind = 0 self.dataset = dataset dataset_types, dataset_shapes = _get_types_and_shapes(dataset) self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes def __iter__(self): self.ind = 0 return self def __next__(self): if self.ind >= self.loop_count: raise StopIteration() self.ind += 1 return self.op() def types_shapes(self): return self.dataset_types, self.dataset_shapes def get_loop_count(self, dataset): loop_count = 1 if hasattr(dataset, '__loop_size__'): loop_size = dataset.__loop_size__ if dataset.get_dataset_size() % loop_size != 0: raise ValueError(f'Dataset size {dataset.get_dataset_size()} and ' f'loop_size {loop_size} are not matched.') loop_count = int(dataset.get_dataset_size() / loop_size) return loop_count class _DatasetIterMSLoopSink(_DatasetIter): """Iter for context (device_target=Ascend)""" def __init__(self, dataset, iter_first_order): super(_DatasetIterMSLoopSink, self).__init__(dataset) loop_size = dataset.__loop_size__ + iter_first_order self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2 # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number # times the batch dimension of tensors for run. Now only support LoopSink. if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): device_num = _get_device_num() self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num) def op(): return tuple() self.op = op