# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner import mindspore.nn as nn import mindspore.context as context class DynamicShapeNet(nn.Cell): def __init__(self): super(DynamicShapeNet, self).__init__() self.convert_to_dynamic_shape_op = inner.GpuConvertToDynamicShape() self.dynamic_shape_op = P.DynamicShape() def construct(self, x): x_dynamic_shape = self.convert_to_dynamic_shape_op(x) return self.dynamic_shape_op(x_dynamic_shape) def dynamic_shape(np_type): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") dynamic_shape_net = DynamicShapeNet() shape = (1,) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (7,) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (1, 1) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (1, 7) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (3, 1) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (2, 4) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (1, 1, 1) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (1, 5, 3) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) shape = (2, 3, 1, 3, 1) x = Tensor(np.zeros(shape).astype(np_type)) ms_out = dynamic_shape_net(x).asnumpy() expected = np.array(shape) np.testing.assert_array_equal(ms_out, expected) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_shape_int32(): dynamic_shape(np.int32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_shape_float16(): dynamic_shape(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_shape_float32(): dynamic_shape(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_shape_bool(): dynamic_shape(np.bool)