# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.common.parameter import Parameter class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return C.grad_all(self.network)(x) # core dump, step_auto_parallel should SetInputs for transpose axis def test_reshape_matmul(): class Net(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.matmul = P.MatMul() self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") def construct(self, x): out = self.reshape(x, (64, 28)) out = self.matmul(out, self.matmul_weight) return out size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([8*size, 28, 1, 1]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") _executor.compile(net, x) if __name__ == '__main__': test_reshape_matmul()