# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in train.py """ from easydict import EasyDict as edict import mindspore.common.dtype as mstype from mindspore.model_zoo.Bert_NEZHA import BertConfig bert_train_cfg = edict({ 'epoch_size': 10, 'num_warmup_steps': 0, 'start_learning_rate': 1e-4, 'end_learning_rate': 0.0, 'decay_steps': 1000, 'power': 10.0, 'save_checkpoint_steps': 2000, 'keep_checkpoint_max': 10, 'checkpoint_prefix': "checkpoint_bert", # please add your own dataset path 'DATA_DIR': "/your/path/examples.tfrecord", # please add your own dataset schema path 'SCHEMA_DIR': "/your/path/datasetSchema.json" }) bert_net_cfg = BertConfig( batch_size=16, seq_length=128, vocab_size=21136, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=True, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16, )