# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluate MobilenetV2 on ImageNet""" import os import argparse from mindspore import context from mindspore import nn from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.quant import quant from src.mobilenetV2 import mobilenetV2 from src.dataset import create_dataset from src.config import config_ascend parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default=None, help='Run device target') parser.add_argument('--quantization_aware', type=bool, default=False, help='Use quantization aware training') args_opt = parser.parse_args() if __name__ == '__main__': config_device_target = None if args_opt.device_target == "Ascend": config_device_target = config_ascend device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) else: raise ValueError("Unsupported device target: {}.".format(args_opt.device_target)) # define fusion network network = mobilenetV2(num_classes=config_device_target.num_classes) if args_opt.quantization_aware: # convert fusion network to quantization aware network network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) # define network loss loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') # define dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config_device_target, device_target=args_opt.device_target, batch_size=config_device_target.batch_size) step_size = dataset.get_dataset_size() # load checkpoint if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(network, param_dict) network.set_train(False) # define model model = Model(network, loss_fn=loss, metrics={'acc'}) print("============== Starting Validation ==============") res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path) print("============== End Validation ==============")