# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import argparse import numpy as np from mindspore.common import dtype as mstype from mindspore import context, Tensor from mindspore.train.serialization import export, load_checkpoint, load_param_into_net from src.network import DenseNet121 from src.config import config parser = argparse.ArgumentParser(description="densenet121 export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=32, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="densenet121", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) if __name__ == "__main__": network = DenseNet121(config.num_classes) param_dict = load_checkpoint(args.ckpt_file) param_dict_new = {} for key, value in param_dict.items(): if key.startswith("moments."): continue elif key.startswith("network."): param_dict_new[key[8:]] = value else: param_dict_new[key] = value load_param_into_net(network, param_dict_new) network.add_flags_recursive(fp16=True) network.set_train(False) shape = [int(args.batch_size), 3] + [int(config.image_size.split(",")[0]), int(config.image_size.split(",")[1])] input_data = Tensor(np.zeros(shape), mstype.float32) export(network, input_data, file_name=args.file_name, file_format=args.file_format)