# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ train step wrap """ import mindspore.nn as nn from mindspore.ops import functional as F from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore import Parameter, ParameterTuple run_opt = C.MultitypeFuncGraph("run_opt") # pylint: disable=unused-argument @run_opt.register("Function", "Int", "Number", "Number", "Tensor", "Tensor", "Tensor") def tensor_run_opt(opt, iterator, learning_rate, momentum, gradient, variable, moment): success = True new_weight = opt(gradient, moment, variable, learning_rate, momentum) success = F.depend(success, P.Assign()(variable, new_weight)) return success class OptimizerByMomentum(nn.Cell): """ OptimizerByMomentum definition """ # list of tensor def __init__(self, weights): super(OptimizerByMomentum, self).__init__() self.learning_rate = Parameter(0.1, name="learning_rate") self.momentum = Parameter(0.05, name="momentum") self.iter = Parameter(0, name="iter") self.weights = weights self.moments = weights.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = P.ApplyMomentum() def construct(self, grads): success = True weights = self.weights moments = self.moments success = self.hyper_map( F.partial(run_opt, self.opt, self.iter, self.learning_rate, self.momentum), grads, weights, moments) # self.learning_rate = updata_lr(self.learning_rate, self.momentum) return success class TrainStepWrap(nn.Cell): """ TrainStepWrap definition """ def __init__(self, network): super(TrainStepWrap, self).__init__() self.network = network self.network.set_train() self.weights = ParameterTuple(network.trainable_params()) self.optimizer = OptimizerByMomentum(self.weights) self.hyper_map = C.HyperMap() self.grad = C.GradOperation('grad', get_by_list=True) def construct(self, x, label): weights = self.weights grads = self.grad(self.network, weights)(x, label) return self.optimizer(grads) class NetWithLossClass(nn.Cell): """ NetWithLossClass definition """ def __init__(self, network): super(NetWithLossClass, self).__init__(auto_prefix=False) self.loss = nn.SoftmaxCrossEntropyWithLogits() self.network = network def construct(self, x, label): predict = self.network(x) return self.loss(predict, label) def train_step_with_loss_warp(network): return TrainStepWrap(NetWithLossClass(network)) class TrainStepWrap2(nn.Cell): """ TrainStepWrap2 definition """ def __init__(self, network, sens): super(TrainStepWrap2, self).__init__() self.network = network self.network.set_train() self.weights = ParameterTuple(network.get_parameters()) self.optimizer = OptimizerByMomentum(self.weights) self.hyper_map = C.HyperMap() self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.sens = sens def construct(self, x): weights = self.weights grads = self.grad(self.network, weights)(x, self.sens) return self.optimizer(grads) def train_step_with_sens(network, sens): return TrainStepWrap2(network, sens) class TrainStepWrapWithoutOpt(nn.Cell): """ TrainStepWrapWithoutOpt definition """ def __init__(self, network): super(TrainStepWrapWithoutOpt, self).__init__() self.network = network self.weights = ParameterTuple(network.trainable_params()) self.grad = C.GradOperation('grad', get_by_list=True) def construct(self, x, label): grads = self.grad(self.network, self.weights)(x, label) return grads def train_step_without_opt(network): return TrainStepWrapWithoutOpt(NetWithLossClass(network))