# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations._grad_ops as G class MinmumGradNet(Cell): def __init__(self): super(MinmumGradNet, self).__init__() self.minimum_grad = G.MinimumGrad() def construct(self, x, y, dy): return self.minimum_grad(x, y, dy) def test_minimum_grad(): np.random.seed(0) input_x = np.random.normal(0, 1, [2, 3]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 3]).astype(np.float32) input_dout = np.minimum(input_x, input_y).astype(np.float32) net = MinmumGradNet() result = net(Tensor(input_x), Tensor(input_y), Tensor(input_dout)) dx = input_dout * (input_x <= input_y) dy = input_dout - dx assert np.allclose(result[0].asnumpy(), dx, rtol=1.e-4, atol=1.e-8, equal_nan=True) assert np.allclose(result[1].asnumpy(), dy, rtol=1.e-4, atol=1.e-8, equal_nan=True) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_basic_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") test_minimum_grad() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_basic_ascend(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend") test_minimum_grad()