# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='GPU') init() rank = get_rank() size = get_group_size() x = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.all_gather = P.AllGather(group=NCCL_WORLD_COMM_GROUP) self.x = Parameter(initializer(Tensor(x), x.shape), name='x') def construct(self): return self.all_gather(self.x) def test_AllGather(): all_gather = Net() output = all_gather() expect = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (0 + 1) for i in range(size - 1): tmp = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 2) expect = np.concatenate((expect, tmp)) diff = np.absolute(output.asnumpy() - expect) error = np.ones(shape=expect.shape) * 1.0e-5 assert np.all(diff < error) assert output.shape == expect.shape