# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.common.dtype as mstype import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.image_gradients = nn.ImageGradients() @ms_function def construct(self, x): return self.image_gradients(x) def test_image_gradients(): image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32) expected_dy = np.array([[[[2, 2], [0, 0]]]]).astype(np.int32) expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32) net = Net() dy, dx = net(image) assert not np.any(dx.asnumpy() - expected_dx) assert not np.any(dy.asnumpy() - expected_dy) def test_image_gradients_multi_channel_depth(): # 4 x 2 x 2 x 2 dtype = mstype.int32 image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[3, 5], [7, 9]], [[11, 13], [15, 17]]], [[[5, 10], [15, 20]], [[25, 30], [35, 40]]], [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype) expected_dy = Tensor(np.array([[[[2, 2], [0, 0]], [[2, 2], [0, 0]]], [[[4, 4], [0, 0]], [[4, 4], [0, 0]]], [[[10, 10], [0, 0]], [[10, 10], [0, 0]]], [[[20, 20], [0, 0]], [[20, 20], [0, 0]]]]), dtype=dtype) expected_dx = Tensor(np.array([[[[1, 0], [1, 0]], [[1, 0], [1, 0]]], [[[2, 0], [2, 0]], [[2, 0], [2, 0]]], [[[5, 0], [5, 0]], [[5, 0], [5, 0]]], [[[10, 0], [10, 0]], [[10, 0], [10, 0]]]]), dtype=dtype) net = Net() dy, dx = net(image) assert not np.any(dx.asnumpy() - expected_dx.asnumpy()) assert not np.any(dy.asnumpy() - expected_dy.asnumpy())