# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class LessNet(nn.Cell): def __init__(self): super(LessNet, self).__init__() self.ops = P.Less() def construct(self, x, y): return self.ops(x, y) class GreaterNet(nn.Cell): def __init__(self): super(GreaterNet, self).__init__() self.ops = P.Greater() def construct(self, x, y): return self.ops(x, y) class LessEqualNet(nn.Cell): def __init__(self): super(LessEqualNet, self).__init__() self.ops = P.LessEqual() def construct(self, x, y): return self.ops(x, y) class GreaterEqualNet(nn.Cell): def __init__(self): super(GreaterEqualNet, self).__init__() self.ops = P.GreaterEqual() def construct(self, x, y): return self.ops(x, y) def gen_data(): # Generate data which contains broadcast scene and two inputs are expr. np.random.seed(0) x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y0_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) x1_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float16) y1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) x2_np = np.random.randint(1, 5, 1).astype(np.int32) y2_np = np.random.randint(1, 5, 1).astype(np.int32) x3_np = np.array(768).astype(np.float32) y3_np = np.array(3072.5).astype(np.float32) x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) return x0, y0, x1, y1, x2, y2, x3, y3 def get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_less = LessNet() less_output_0 = net_less(x0, y0).asnumpy() less_output_1 = net_less(x1, y1).asnumpy() less_output_2 = net_less(x2, y2).asnumpy() less_output_3 = net_less(x3, y3).asnumpy() return less_output_0, less_output_1, less_output_2, less_output_3 def get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_greater = GreaterNet() greater_output_0 = net_greater(x0, y0).asnumpy() greater_output_1 = net_greater(x1, y1).asnumpy() greater_output_2 = net_greater(x2, y2).asnumpy() greater_output_3 = net_greater(x3, y3).asnumpy() return greater_output_0, greater_output_1, greater_output_2, greater_output_3 def get_less_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_less_equal = LessEqualNet() less_equal_output_0 = net_less_equal(x0, y0).asnumpy() less_equal_output_1 = net_less_equal(x1, y1).asnumpy() less_equal_output_2 = net_less_equal(x2, y2).asnumpy() less_equal_output_3 = net_less_equal(x3, y3).asnumpy() return less_equal_output_0, less_equal_output_1, less_equal_output_2, less_equal_output_3 def get_greater_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net_greater_equal = GreaterEqualNet() greter_equal_output_0 = net_greater_equal(x0, y0).asnumpy() greter_equal_output_1 = net_greater_equal(x1, y1).asnumpy() greter_equal_output_2 = net_greater_equal(x2, y2).asnumpy() greter_equal_output_3 = net_greater_equal(x3, y3).asnumpy() return greter_equal_output_0, greter_equal_output_1, greter_equal_output_2, greter_equal_output_3 def test_less_net(): x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True) out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_net_output( x0, y0, x1, y1, x2, y2, x3, y3, False) assert np.all(out_gk_on_0 == out_gk_off_0) assert out_gk_on_0.shape == out_gk_off_0.shape assert np.all(out_gk_on_1 == out_gk_off_1) assert out_gk_on_1.shape == out_gk_off_1.shape assert np.all(out_gk_on_2 == out_gk_off_2) assert out_gk_on_2.shape == out_gk_off_2.shape assert np.all(out_gk_on_3 == out_gk_off_3) assert out_gk_on_3.shape == out_gk_off_3.shape def test_greater_net(): x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True) out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_net_output( x0, y0, x1, y1, x2, y2, x3, y3, False) assert np.all(out_gk_on_0 == out_gk_off_0) assert out_gk_on_0.shape == out_gk_off_0.shape assert np.all(out_gk_on_1 == out_gk_off_1) assert out_gk_on_1.shape == out_gk_off_1.shape assert np.all(out_gk_on_2 == out_gk_off_2) assert out_gk_on_2.shape == out_gk_off_2.shape assert np.all(out_gk_on_3 == out_gk_off_3) assert out_gk_on_3.shape == out_gk_off_3.shape def test_less_equal_net(): x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_equal_net_output( x0, y0, x1, y1, x2, y2, x3, y3, True) out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_equal_net_output( x0, y0, x1, y1, x2, y2, x3, y3, False) assert np.all(out_gk_on_0 == out_gk_off_0) assert out_gk_on_0.shape == out_gk_off_0.shape assert np.all(out_gk_on_1 == out_gk_off_1) assert out_gk_on_1.shape == out_gk_off_1.shape assert np.all(out_gk_on_2 == out_gk_off_2) assert out_gk_on_2.shape == out_gk_off_2.shape assert np.all(out_gk_on_3 == out_gk_off_3) assert out_gk_on_3.shape == out_gk_off_3.shape def test_greater_equal_net(): x0, y0, x1, y1, x2, y2, x3, y3 = gen_data() out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_equal_net_output( x0, y0, x1, y1, x2, y2, x3, y3, True) out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_equal_net_output( x0, y0, x1, y1, x2, y2, x3, y3, False) assert np.all(out_gk_on_0 == out_gk_off_0) assert out_gk_on_0.shape == out_gk_off_0.shape assert np.all(out_gk_on_1 == out_gk_off_1) assert out_gk_on_1.shape == out_gk_off_1.shape assert np.all(out_gk_on_2 == out_gk_off_2) assert out_gk_on_2.shape == out_gk_off_2.shape assert np.all(out_gk_on_3 == out_gk_off_3) assert out_gk_on_3.shape == out_gk_off_3.shape @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_less_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') test_less_net() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_greater_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') test_greater_net() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_less_equal_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') test_less_equal_net() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_greater_equal_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') test_greater_equal_net()