# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P class Net(Cell): def __init__(self): super(Net, self).__init__() self.matmul = P.MatMul(transpose_a=True, transpose_b=True) def construct(self, x, y): return self.matmul(x, y) class Net1(Cell): def __init__(self): super(Net1, self).__init__() self.matmul = P.MatMul(transpose_a=True, transpose_b=True) self.add = P.BiasAdd() def construct(self, x, y, bias): res = self.matmul(x, y) return self.add(res, bias) def get_output(i0, i1, enable_graph_kernel=False): if enable_graph_kernel: context.set_context(enable_graph_kernel=True, save_graphs=False) net = Net() output = net(i0, i1) return output def get_output1(i0, i1, i2, enable_graph_kernel=False): if enable_graph_kernel: context.set_context(enable_graph_kernel=True, save_graphs=False) net = Net1() output = net(i0, i1, i2) return output def test_basic(): i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16)) i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16)) expect = get_output(i0, i1, False) output = get_output(i0, i1, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7) def test_basic1(): i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16)) i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16)) i2 = Tensor(np.random.normal(100, 0.01, [128,]).astype(np.float16)) expect = get_output1(i0, i1, i2, False) output = get_output1(i0, i1, i2, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 6.e-4, 6.e-4) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_basic_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_basic() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_basic_ascend1(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_basic1()