# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ######################## train alexnet example ######################## train alexnet and get network model files(.ckpt) : python train.py --data_path /YourDataPath """ import ast import argparse import os from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg from src.dataset import create_dataset_cifar10, create_dataset_imagenet from src.generator_lr import get_lr_cifar10, get_lr_imagenet from src.alexnet import AlexNet from src.get_param_groups import get_param_groups import mindspore.nn as nn from mindspore.communication.management import init, get_rank from mindspore import context from mindspore import Tensor from mindspore.train import Model from mindspore.context import ParallelMode from mindspore.nn.metrics import Accuracy from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.common import set_seed set_seed(1) if __name__ == "__main__": parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], help='dataset name.') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=ast.literal_eval, default=True, help='dataset_sink_mode is False or True') parser.add_argument('--device_id', type=int, default=0, help='device id of GPU or Ascend. (Default: None)') args = parser.parse_args() if args.dataset_name == "cifar10": cfg = alexnet_cifar10_cfg elif args.dataset_name == "imagenet": cfg = alexnet_imagenet_cfg else: raise ValueError("Unsupport dataset.") device_target = args.device_target context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) context.set_context(save_graphs=False) device_num = int(os.environ.get("DEVICE_NUM", 1)) if device_target == "Ascend": context.set_context(device_id=args.device_id) if device_num > 1: context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() elif device_target == "GPU": init() if device_num > 1: context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) else: raise ValueError("Unsupported platform.") if args.dataset_name == "cifar10": ds_train = create_dataset_cifar10(args.data_path, cfg.batch_size, target=args.device_target) elif args.dataset_name == "imagenet": ds_train = create_dataset_imagenet(args.data_path, cfg.batch_size) else: raise ValueError("Unsupport dataset.") network = AlexNet(cfg.num_classes) loss_scale_manager = None metrics = None if args.dataset_name == 'cifar10': loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) metrics = {"Accuracy": Accuracy()} elif args.dataset_name == 'imagenet': loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") lr = Tensor(get_lr_imagenet(cfg, ds_train.get_dataset_size())) opt = nn.Momentum(params=get_param_groups(network), learning_rate=lr, momentum=cfg.momentum, weight_decay=cfg.weight_decay, loss_scale=cfg.loss_scale) from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager if cfg.is_dynamic_loss_scale == 1: loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000) else: loss_scale_manager = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False) else: raise ValueError("Unsupport dataset.") if device_target == "Ascend": model = Model(network, loss_fn=loss, optimizer=opt, metrics=metrics, amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=loss_scale_manager) elif device_target == "GPU": model = Model(network, loss_fn=loss, optimizer=opt, metrics=metrics, loss_scale_manager=loss_scale_manager) else: raise ValueError("Unsupported platform.") if device_num > 1: ckpt_save_dir = os.path.join(args.ckpt_path + "_" + str(get_rank())) else: ckpt_save_dir = args.ckpt_path time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck) print("============== Starting Training ==============") model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], dataset_sink_mode=args.dataset_sink_mode)