# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from builtins import range, super import time import pytest from mindspore import context from mindspore import log as logger from mindspore.dataset.callback import DSCallback, WaitedDSCallback from mindspore.train import Model from mindspore.train.callback import Callback import mindspore.dataset as ds import mindspore.nn as nn context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class MyDSCallback(DSCallback): def __init__(self, step_size=1, events=None, cb_id=0): super().__init__(step_size) self.events = events self.cb_id = cb_id def append(self, event_name, ds_run_context): event = [event_name, ds_run_context.cur_epoch_num, ds_run_context.cur_step_num_in_epoch, ds_run_context.cur_step_num] event = '_'.join([str(e) for e in event]) index = -1 for i, e in enumerate(self.events): if e[0] == event: index = i break if index != -1: self.events[index][1].append(self.cb_id) else: self.events.append((event, [self.cb_id])) def ds_begin(self, ds_run_context): self.append("begin", ds_run_context) def ds_end(self, ds_run_context): self.append("end", ds_run_context) def ds_epoch_begin(self, ds_run_context): self.append("epoch_begin", ds_run_context) def ds_epoch_end(self, ds_run_context): self.append("epoch_end", ds_run_context) def ds_step_begin(self, ds_run_context): self.append("step_begin", ds_run_context) def ds_step_end(self, ds_run_context): self.append("step_end", ds_run_context) def generate_expected(epoch_num, step_num, step_size=1, map_num=1, repeat=1): events = [] cb_id = list(range(map_num)) def append(name, e, s): event = [name, e + 1, s + 1, e * step_num * repeat + s + 1] event = '_'.join([str(ev) for ev in event]) events.append((event, cb_id)) events.append(("begin_0_0_0", cb_id)) for e in range(epoch_num): append("epoch_begin", e, -1) for s in range(step_num * repeat): if s % step_size == 0: append("step_begin", e, s) append("step_end", e, s) append("epoch_end", e, step_num * repeat - 1) return events def build_test_case_1cb(epochs, steps, step_size=1, repeat=1): events = [] arr = list(range(1, steps + 1)) data = ds.NumpySlicesDataset(arr, shuffle=False) my_cb = MyDSCallback(step_size=step_size, events=events) data = data.map(operations=(lambda x: x), callbacks=my_cb) if repeat != 1: data = data.repeat(repeat) itr = data.create_tuple_iterator(num_epochs=epochs) for _ in range(epochs): for _ in itr: pass expected_events = generate_expected(epochs, steps, step_size, 1, repeat) assert expected_events == events def build_test_case_2cbs(epochs, steps): events1 = [] events2 = [] my_cb1 = MyDSCallback(events=events1) my_cb2 = MyDSCallback(events=events2) arr = list(range(1, steps + 1)) data = ds.NumpySlicesDataset(arr, shuffle=False) data = data.map(operations=(lambda x: x), callbacks=[my_cb1, my_cb2]) itr = data.create_tuple_iterator(num_epochs=epochs) for _ in range(epochs): for _ in itr: pass expected_events = generate_expected(epochs, steps) assert expected_events == events1 assert expected_events == events2 def build_test_case_2maps(epochs, steps): events = [] my_cb1 = MyDSCallback(events=events, cb_id=0) my_cb2 = MyDSCallback(events=events, cb_id=1) arr = list(range(1, steps + 1)) data = ds.NumpySlicesDataset(arr, shuffle=False) data = data.map(operations=(lambda x: x), callbacks=my_cb1) data = data.map(operations=(lambda x: x), callbacks=my_cb2) itr = data.create_tuple_iterator(num_epochs=epochs) for _ in range(epochs): for _ in itr: pass expected_events = generate_expected(epochs, steps, map_num=2) assert expected_events[1:] == events[1:] for event in events: assert len(event) == 2 event, cb_ids = event if event != "begin_0_0_0": assert cb_ids[0] == 0 assert cb_ids[1] == 1 def test_callbacks_all_methods(): logger.info("test_callbacks_all_methods") build_test_case_1cb(1, 1) build_test_case_1cb(1, 2) build_test_case_1cb(1, 3) build_test_case_1cb(1, 4) build_test_case_1cb(2, 1) build_test_case_1cb(2, 2) build_test_case_1cb(2, 3) build_test_case_1cb(2, 4) build_test_case_1cb(3, 1) build_test_case_1cb(3, 2) build_test_case_1cb(3, 3) build_test_case_1cb(3, 4) def test_callbacks_var_step_size(): logger.info("test_callbacks_var_step_size") build_test_case_1cb(1, 2, 2) build_test_case_1cb(1, 3, 2) build_test_case_1cb(1, 4, 2) build_test_case_1cb(2, 2, 2) build_test_case_1cb(2, 3, 2) build_test_case_1cb(2, 4, 2) build_test_case_1cb(3, 2, 2) build_test_case_1cb(3, 3, 2) build_test_case_1cb(3, 4, 2) def test_callbacks_all_2cbs(): logger.info("test_callbacks_all_2cbs") build_test_case_2cbs(4, 1) build_test_case_2cbs(4, 2) build_test_case_2cbs(4, 3) build_test_case_2cbs(4, 4) def test_callbacks_2maps(): logger.info("test_callbacks_2maps") build_test_case_2maps(5, 10) build_test_case_2maps(6, 9) class MyWaitedCallback(WaitedDSCallback): def __init__(self, events, step_size=1): super().__init__(step_size) self.events = events def sync_epoch_begin(self, train_run_context, ds_run_context): event = f"ds_epoch_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" self.events.append(event) def sync_step_begin(self, train_run_context, ds_run_context): event = f"ds_step_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" self.events.append(event) class MyMSCallback(Callback): def __init__(self, events): self.events = events def epoch_end(self, run_context): cb_params = run_context.original_args() event = f"ms_epoch_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" self.events.append(event) def step_end(self, run_context): cb_params = run_context.original_args() event = f"ms_step_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" self.events.append(event) class Net(nn.Cell): def construct(self, x, y): return x def test_train_non_sink(): logger.info("test_train_non_sink") events = [] my_cb1 = MyWaitedCallback(events, 1) my_cb2 = MyMSCallback(events) arr = [1, 2, 3, 4] data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False) data = data.map(operations=(lambda x: x), callbacks=my_cb1) net = Net() model = Model(net) model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1]) expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3', 'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4', 'ms_epoch_end_1_4', 'ds_epoch_begin_2_4', 'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6', 'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8', 'ms_step_end_2_8', 'ms_epoch_end_2_8'] assert events == expected_synced_events def test_train_batch_size2(): logger.info("test_train_batch_size2") events = [] my_cb1 = MyWaitedCallback(events, 2) my_cb2 = MyMSCallback(events) arr = [1, 2, 3, 4] data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False) data = data.map(operations=(lambda x: x), callbacks=my_cb1) data = data.batch(2) net = Net() model = Model(net) model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1]) expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_3', 'ms_step_end_1_2', 'ms_epoch_end_1_2', 'ds_epoch_begin_2_4', 'ds_step_begin_2_5', 'ms_step_end_2_3', 'ds_step_begin_2_7', 'ms_step_end_2_4', 'ms_epoch_end_2_4'] assert events == expected_synced_events def test_callbacks_validations(): logger.info("test_callbacks_validations") with pytest.raises(Exception) as err: data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False) data.map(operations=(lambda x: x), callbacks=0) assert "Argument callbacks with value 0 is not " in str(err.value) with pytest.raises(Exception) as err: my_cb1 = MyDSCallback() data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False) data.map(operations=(lambda x: x), callbacks=[my_cb1, 0]) assert "Argument callbacks[1] with value 0 is not " in str(err.value) with pytest.raises(Exception) as err: class BadCB(DSCallback): pass my_cb = BadCB() data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False) data = data.map(operations=(lambda x: x), callbacks=my_cb) for _ in data: pass assert "Provided Callback class did not override any of the 6 callback methods." in str(err.value) def test_callback_sink_simulation(): logger.info("test_callback_sink_simulation") events = [] epochs = 2 my_cb = MyWaitedCallback(events, 1) data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False) data = data.map(operations=(lambda x: x), callbacks=my_cb) data = data.to_device() data.send(num_epochs=epochs) for e in range(epochs): for s in range(4): time.sleep(0.5) events.append(f"ms_step_end_{e + 1}_{e * 4 + s + 1}") my_cb.step_end(run_context=0) events.append(f"ms_epoch_end_{e + 1}_{(e + 1) * 4}") my_cb.epoch_end(run_context=0) expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3', 'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4', 'ms_epoch_end_1_4', 'ds_epoch_begin_2_4', 'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6', 'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8', 'ms_step_end_2_8', 'ms_epoch_end_2_8'] assert events == expected_synced_events def test_callbacks_repeat(): logger.info("test_callbacks_repeat") build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2) build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=3) build_test_case_1cb(epochs=2, steps=2, step_size=2, repeat=3) build_test_case_1cb(epochs=3, steps=2, step_size=4, repeat=3) if __name__ == '__main__': test_callbacks_all_methods() test_callbacks_all_2cbs() test_callbacks_2maps() test_callbacks_validations() test_callbacks_var_step_size() test_train_batch_size2() test_callback_sink_simulation() test_callbacks_repeat()