# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self, pad_dim_size): super(Net, self).__init__() self.padding = P.Padding(pad_dim_size) def construct(self, x): return self.padding(x) def test_padding(): x = Tensor(np.array([[8], [10]]), mstype.int32) padding = Net(4) out = padding(x) assert(out.asnumpy() == [[8, 0, 0, 0], [10, 0, 0, 0]]).all()