# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import mindspore.dataset.transforms.vision.c_transforms as vision import mindspore.dataset.transforms.c_transforms as data_trans import pytest import mindspore.dataset as ds from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_case_repeat(): """ a simple repeat operation. """ logger.info("Test Simple Repeat") # define parameters repeat_count = 2 # apply dataset operations data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) data1 = data1.repeat(repeat_count) num_iter = 0 for item in data1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("image is: {}".format(item["image"])) logger.info("label is: {}".format(item["label"])) num_iter += 1 logger.info("Number of data in data1: {}".format(num_iter)) def test_case_shuffle(): """ a simple shuffle operation. """ logger.info("Test Simple Shuffle") # define parameters buffer_size = 8 seed = 10 # apply dataset operations data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) ds.config.set_seed(seed) data1 = data1.shuffle(buffer_size=buffer_size) for item in data1.create_dict_iterator(): logger.info("image is: {}".format(item["image"])) logger.info("label is: {}".format(item["label"])) def test_case_0(): """ Test Repeat then Shuffle """ logger.info("Test Repeat then Shuffle") # define parameters repeat_count = 2 buffer_size = 7 seed = 9 # apply dataset operations data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) data1 = data1.repeat(repeat_count) ds.config.set_seed(seed) data1 = data1.shuffle(buffer_size=buffer_size) num_iter = 0 for item in data1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("image is: {}".format(item["image"])) logger.info("label is: {}".format(item["label"])) num_iter += 1 logger.info("Number of data in data1: {}".format(num_iter)) def test_case_0_reverse(): """ Test Shuffle then Repeat """ logger.info("Test Shuffle then Repeat") # define parameters repeat_count = 2 buffer_size = 10 seed = 9 # apply dataset operations data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) ds.config.set_seed(seed) data1 = data1.shuffle(buffer_size=buffer_size) data1 = data1.repeat(repeat_count) num_iter = 0 for item in data1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("image is: {}".format(item["image"])) logger.info("label is: {}".format(item["label"])) num_iter += 1 logger.info("Number of data in data1: {}".format(num_iter)) def test_case_3(): """ Test Map """ logger.info("Test Map Rescale and Resize, then Shuffle") data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) # define data augmentation parameters rescale = 1.0 / 255.0 shift = 0.0 resize_height, resize_width = 224, 224 # define map operations decode_op = vision.Decode() rescale_op = vision.Rescale(rescale, shift) # resize_op = vision.Resize(resize_height, resize_width, # InterpolationMode.DE_INTER_LINEAR) # Bilinear mode resize_op = vision.Resize((resize_height, resize_width)) # apply map operations on images data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=rescale_op) data1 = data1.map(input_columns=["image"], operations=resize_op) # # apply ont-hot encoding on labels num_classes = 4 one_hot_encode = data_trans.OneHot(num_classes) # num_classes is input argument data1 = data1.map(input_columns=["label"], operations=one_hot_encode) # # # apply Datasets buffer_size = 100 seed = 10 batch_size = 2 ds.config.set_seed(seed) data1 = data1.shuffle(buffer_size=buffer_size) # 10000 as in imageNet train script data1 = data1.batch(batch_size, drop_remainder=True) num_iter = 0 for item in data1.create_dict_iterator(): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("image is: {}".format(item["image"])) logger.info("label is: {}".format(item["label"])) num_iter += 1 logger.info("Number of data in data1: {}".format(num_iter)) if __name__ == '__main__': logger.info('===========now test Repeat============') # logger.info('Simple Repeat') test_case_repeat() logger.info('\n') logger.info('===========now test Shuffle===========') # logger.info('Simple Shuffle') test_case_shuffle() logger.info('\n') # Note: cannot work with different shapes, hence not for image # logger.info('===========now test Batch=============') # # logger.info('Simple Batch') # test_case_batch() # logger.info('\n') logger.info('===========now test case 0============') # logger.info('Repeat then Shuffle') test_case_0() logger.info('\n') logger.info('===========now test case 0 reverse============') # # logger.info('Shuffle then Repeat') test_case_0_reverse() logger.info('\n') # logger.info('===========now test case 1============') # # logger.info('Repeat with Batch') # test_case_1() # logger.info('\n') # logger.info('===========now test case 2============') # # logger.info('Batch with Shuffle') # test_case_2() # logger.info('\n') # for image augmentation only logger.info('===========now test case 3============') logger.info('Map then Shuffle') test_case_3() logger.info('\n')