# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P from mindspore.nn.graph_kernels import ReLU context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") class Net(Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() self.sub = P.Sub() self.mul = P.Mul() self.relu = ReLU() def construct(self, x, y): sub_res = self.sub(x, y) mul_res = self.mul(sub_res, x) relu_res = self.relu(mul_res) square_res = P.Square()(relu_res) add_res = self.add(relu_res, square_res) add1_res = self.add(add_res, add_res) return self.add(add1_res, add1_res) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_basic(): input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) sub_res = input_x - input_y mul_res = sub_res * input_x relu_res = np.maximum(mul_res, 0) square_res = np.square(relu_res) add_res = relu_res + square_res add1_res = add_res + add_res expect = add1_res + add1_res net = Net() result = net(Tensor(input_x), Tensor(input_y)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res