# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for Deeptext""" import argparse import os import time import numpy as np from src.Deeptext.deeptext_vgg16 import Deeptext_VGG16 from src.config import config from src.dataset import data_to_mindrecord_byte_image, create_deeptext_dataset from src.utils import metrics from mindspore import context from mindspore.common import set_seed from mindspore.train.serialization import load_checkpoint, load_param_into_net set_seed(1) parser = argparse.ArgumentParser(description="Deeptext evaluation") parser.add_argument("--checkpoint_path", type=str, default='test', help="Checkpoint file path.") parser.add_argument("--imgs_path", type=str, required=True, help="Test images files paths, multiple paths can be separated by ','.") parser.add_argument("--annos_path", type=str, required=True, help="Annotations files paths of test images, multiple paths can be separated by ','.") parser.add_argument("--device_id", type=int, default=7, help="Device id, default is 7.") parser.add_argument("--mindrecord_prefix", type=str, default='Deeptext-TEST', help="Prefix of mindrecord.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) def deeptext_eval_test(dataset_path='', ckpt_path=''): """Deeptext evaluation.""" ds = create_deeptext_dataset(dataset_path, batch_size=config.test_batch_size, repeat_num=1, is_training=False) total = ds.get_dataset_size() net = Deeptext_VGG16(config) param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) net.set_train(False) eval_iter = 0 print("\n========================================\n") print("Processing, please wait a moment.") max_num = 32 pred_data = [] for data in ds.create_dict_iterator(): eval_iter = eval_iter + 1 img_data = data['image'] img_metas = data['image_shape'] gt_bboxes = data['box'] gt_labels = data['label'] gt_num = data['valid_num'] start = time.time() # run net output = net(img_data, img_metas, gt_bboxes, gt_labels, gt_num) gt_bboxes = gt_bboxes.asnumpy() gt_bboxes = gt_bboxes[gt_num.asnumpy().astype(bool), :] print(gt_bboxes) gt_labels = gt_labels.asnumpy() gt_labels = gt_labels[gt_num.asnumpy().astype(bool)] print(gt_labels) end = time.time() print("Iter {} cost time {}".format(eval_iter, end - start)) # output all_bbox = output[0] all_label = output[1] + 1 all_mask = output[2] for j in range(config.test_batch_size): all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :]) all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :]) all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :]) all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :] all_labels_tmp_mask = all_label_squee[all_mask_squee] if all_bboxes_tmp_mask.shape[0] > max_num: inds = np.argsort(-all_bboxes_tmp_mask[:, -1]) inds = inds[:max_num] all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds] all_labels_tmp_mask = all_labels_tmp_mask[inds] pred_data.append({"boxes": all_bboxes_tmp_mask, "labels": all_labels_tmp_mask, "gt_bboxes": gt_bboxes, "gt_labels": gt_labels}) percent = round(eval_iter / total * 100, 2) print(' %s [%d/%d]' % (str(percent) + '%', eval_iter, total), end='\r') precisions, recalls = metrics(pred_data) print("\n========================================\n") for i in range(config.num_classes - 1): j = i + 1 f1 = (2 * precisions[j] * recalls[j]) / (precisions[j] + recalls[j] + 1e-6) print("class {} precision is {:.2f}%, recall is {:.2f}%," "F1 is {:.2f}%".format(j, precisions[j] * 100, recalls[j] * 100, f1 * 100)) if config.use_ambigous_sample: break if __name__ == '__main__': prefix = args_opt.mindrecord_prefix config.test_images = args_opt.imgs_path config.test_txts = args_opt.annos_path mindrecord_dir = config.mindrecord_dir mindrecord_file = os.path.join(mindrecord_dir, prefix) print("CHECKING MINDRECORD FILES ...") if not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) print("Create Mindrecord. It may take some time.") data_to_mindrecord_byte_image(False, prefix, file_num=1) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) print("CHECKING MINDRECORD FILES DONE!") print("Start Eval!") deeptext_eval_test(mindrecord_file, args_opt.checkpoint_path)