# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ mobilenetv3 export mindir. """ import argparse import numpy as np from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export from src.config import config_gpu from src.config import config_cpu from src.mobilenetV3 import mobilenet_v3_large parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, required=True, help='Checkpoint file path') parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') args_opt = parser.parse_args() if __name__ == '__main__': cfg = None if args_opt.device_target == "GPU": cfg = config_gpu context.set_context(mode=context.GRAPH_MODE, device_target="GPU") elif args_opt.device_target == "CPU": cfg = config_cpu context.set_context(mode=context.GRAPH_MODE, device_target="CPU") else: raise ValueError("Unsupported device_target.") net = mobilenet_v3_large(num_classes=cfg.num_classes, activation="Softmax") param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) input_shp = [1, 3, cfg.image_height, cfg.image_width] input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format)