# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import argparse import numpy as np import mindspore from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16 from src.config import config from src.box_utils import default_boxes parser = argparse.ArgumentParser(description='SSD export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="ssd", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': if config.model == "ssd300": net = SSD300(ssd_mobilenet_v2(), config, is_training=False) elif config.model == "ssd_vgg16": net = ssd_vgg16(config=config) elif config.model == "ssd_mobilenet_v1_fpn": net = ssd_mobilenet_v1_fpn(config=config) elif config.model == "ssd_resnet50_fpn": net = ssd_resnet50_fpn(config=config) else: raise ValueError(f'config.model: {config.model} is not supported') net = SsdInferWithDecoder(net, Tensor(default_boxes), config) param_dict = load_checkpoint(args.ckpt_file) net.init_parameters_data() load_param_into_net(net, param_dict) net.set_train(False) input_shp = [args.batch_size, 3] + config.img_shape input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mindspore.float32) export(net, input_array, file_name=args.file_name, file_format=args.file_format)