# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ GCN training script. """ import os import time import argparse import ast import numpy as np from matplotlib import pyplot as plt from matplotlib import animation from sklearn import manifold from mindspore import context from mindspore import Tensor from mindspore.train.serialization import save_checkpoint, load_checkpoint from src.gcn import GCN from src.metrics import LossAccuracyWrapper, TrainNetWrapper from src.config import ConfigGCN from src.dataset import get_adj_features_labels, get_mask def t_SNE(out_feature, dim): t_sne = manifold.TSNE(n_components=dim, init='pca', random_state=0) return t_sne.fit_transform(out_feature) def update_graph(i, data, scat, plot): scat.set_offsets(data[i]) plt.title('t-SNE visualization of Epoch:{0}'.format(i)) return scat, plot def train(): """Train model.""" parser = argparse.ArgumentParser(description='GCN') parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Dataset directory') parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training') parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation') parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test') parser.add_argument('--save_TSNE', type=ast.literal_eval, default=False, help='Whether to save t-SNE graph') args_opt = parser.parse_args() if not os.path.exists("ckpts"): os.mkdir("ckpts") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) config = ConfigGCN() adj, feature, label_onehot, label = get_adj_features_labels(args_opt.data_dir) nodes_num = label_onehot.shape[0] train_mask = get_mask(nodes_num, 0, args_opt.train_nodes_num) eval_mask = get_mask(nodes_num, args_opt.train_nodes_num, args_opt.train_nodes_num + args_opt.eval_nodes_num) test_mask = get_mask(nodes_num, nodes_num - args_opt.test_nodes_num, nodes_num) class_num = label_onehot.shape[1] input_dim = feature.shape[1] gcn_net = GCN(config, input_dim, class_num) gcn_net.add_flags_recursive(fp16=True) adj = Tensor(adj) feature = Tensor(feature) eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay) train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config) loss_list = [] if args_opt.save_TSNE: out_feature = gcn_net() tsne_result = t_SNE(out_feature.asnumpy(), 2) graph_data = [] graph_data.append(tsne_result) fig = plt.figure() scat = plt.scatter(tsne_result[:, 0], tsne_result[:, 1], s=2, c=label, cmap='rainbow') plt.title('t-SNE visualization of Epoch:0', fontsize='large', fontweight='bold', verticalalignment='center') for epoch in range(config.epochs): t = time.time() train_net.set_train() train_result = train_net(adj, feature) train_loss = train_result[0].asnumpy() train_accuracy = train_result[1].asnumpy() eval_net.set_train(False) eval_result = eval_net(adj, feature) eval_loss = eval_result[0].asnumpy() eval_accuracy = eval_result[1].asnumpy() loss_list.append(eval_loss) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss), "train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss), "val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t)) if args_opt.save_TSNE: out_feature = gcn_net() tsne_result = t_SNE(out_feature.asnumpy(), 2) graph_data.append(tsne_result) if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]): print("Early stopping...") break save_checkpoint(gcn_net, "ckpts/gcn.ckpt") gcn_net_test = GCN(config, input_dim, class_num) load_checkpoint("ckpts/gcn.ckpt", net=gcn_net_test) gcn_net_test.add_flags_recursive(fp16=True) test_net = LossAccuracyWrapper(gcn_net_test, label_onehot, test_mask, config.weight_decay) t_test = time.time() test_net.set_train(False) test_result = test_net(adj, feature) test_loss = test_result[0].asnumpy() test_accuracy = test_result[1].asnumpy() print("Test set results:", "loss=", "{:.5f}".format(test_loss), "accuracy=", "{:.5f}".format(test_accuracy), "time=", "{:.5f}".format(time.time() - t_test)) if args_opt.save_TSNE: ani = animation.FuncAnimation(fig, update_graph, frames=range(config.epochs + 1), fargs=(graph_data, scat, plt)) ani.save('t-SNE_visualization.gif', writer='imagemagick') if __name__ == '__main__': train()