# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defined callback for DeepFM. """ import time from mindspore.train.callback import Callback from mindspore import Tensor import numpy as np class TimeMonitor(Callback): """ Time monitor for calculating cost of each epoch. Args: data_size (int): step size of an epoch. """ def __init__(self, data_size): super(TimeMonitor, self).__init__() self.data_size = data_size def epoch_begin(self, run_context): self.epoch_time = time.time() def epoch_end(self, run_context): epoch_mseconds = (time.time() - self.epoch_time) * 1000 per_step_mseconds = epoch_mseconds / self.data_size print("epoch time: {0}, per step time: {1}".format(epoch_mseconds, per_step_mseconds), flush=True) def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): step_mseconds = (time.time() - self.step_time) * 1000 print(f"step time {step_mseconds}", flush=True) class Monitor(Callback): """ Monitor loss and time. Args: lr_init (numpy array): train lr Returns: None Examples: >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) """ def __init__(self, lr_init=None): super(Monitor, self).__init__() self.lr_init = lr_init self.lr_init_len = len(lr_init) def epoch_begin(self, run_context): self.losses = [] self.epoch_time = time.time() def epoch_end(self, run_context): cb_params = run_context.original_args() epoch_mseconds = (time.time() - self.epoch_time) per_step_mseconds = epoch_mseconds / cb_params.batch_num print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.6f}".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses))) def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): """step end""" cb_params = run_context.original_args() step_mseconds = (time.time() - self.step_time) step_loss = cb_params.net_outputs if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): step_loss = step_loss[0] if isinstance(step_loss, Tensor): step_loss = np.mean(step_loss.asnumpy()) self.losses.append(step_loss) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.6f}/{:5.6f}], time:[{:5.3f}], lr:[{:.9f}]".format( cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1].asnumpy()))