# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_training """ import numpy as np import mindspore.nn as nn from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.nn.optim import Momentum from mindspore.train.model import Model from mindspore.nn import WithGradCell, WithLossCell from ..ut_filter import non_graph_engine from mindspore import context def setup_module(module): context.set_context(mode=context.PYNATIVE_MODE) class LeNet5(nn.Cell): """ LeNet5 definition """ def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = P.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x @non_graph_engine def test_loss_cell_wrapper(): """ test_loss_cell_wrapper """ data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([1, 10]).astype(np.float32)) net = LeNet5() loss_fn = nn.SoftmaxCrossEntropyWithLogits() loss_net = WithLossCell(net, loss_fn) loss_out = loss_net(data, label) assert loss_out.asnumpy().dtype == 'float32' or loss_out.asnumpy().dtype == 'float64' @non_graph_engine def test_grad_cell_wrapper(): """ test_grad_cell_wrapper """ data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([1, 10]).astype(np.float32)) dout = Tensor(np.ones([1]).astype(np.float32)) net = LeNet5() loss_fn = nn.SoftmaxCrossEntropyWithLogits() grad_net = WithGradCell(net, loss_fn, dout) gradients = grad_net(data, label) assert isinstance(gradients[0].asnumpy()[0][0][0][0], (np.float32, np.float64))