# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G class NetReLU6Grad(nn.Cell): def __init__(self): super(NetReLU6Grad, self).__init__() self.relu6_grad = G.ReLU6Grad() def construct(self, x, dy): return self.relu6_grad(dy, x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu6_grad(): x = Tensor(np.array([[[[-1, 1, 10], [5.9, 6.1, 6], [10, 1, -1]]]]).astype(np.float32)) dy = Tensor(np.array([[[[1, 1, 1], [1, 1, 1], [1, 1, 1]]]]).astype(np.float32)) expect = np.array([[[[0, 1, 0, ], [1, 0, 0, ], [0, 1, 0, ]]]]).astype(np.float32) error = np.ones(shape=[3, 3]) * 1.0e-6 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu6_grad = NetReLU6Grad() output = relu6_grad(x, dy) diff = output.asnumpy() - expect assert np.all(np.abs(diff) < error)