# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation script for SQuAD task""" import os import collections import mindspore.dataset as de import mindspore.dataset.transforms.c_transforms as C import mindspore.common.dtype as mstype from mindspore import context from mindspore.common.tensor import Tensor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src import tokenization from src.evaluation_config import cfg, bert_net_cfg from src.utils import BertSquad from src.create_squad_data import read_squad_examples, convert_examples_to_features from src.run_squad import write_predictions def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''): """get SQuAD dataset from tfrecord""" ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"], shuffle=False) type_cast_op = C.TypeCast(mstype.int32) ds = ds.map(input_columns="segment_ids", operations=type_cast_op) ds = ds.map(input_columns="input_ids", operations=type_cast_op) ds = ds.map(input_columns="input_mask", operations=type_cast_op) ds = ds.repeat(repeat_count) ds = ds.batch(batch_size, drop_remainder=True) return ds def test_eval(): """Evaluation function for SQuAD task""" tokenizer = tokenization.FullTokenizer(vocab_file="./vocab.txt", do_lower_case=True) input_file = "dataset/v1.1/dev-v1.1.json" eval_examples = read_squad_examples(input_file, False) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=384, doc_stride=128, max_query_length=64, is_training=False, output_fn=None, verbose_logging=False) device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=device_id) dataset = get_squad_dataset(bert_net_cfg.batch_size, 1) net = BertSquad(bert_net_cfg, False, 2) net.set_train(False) param_dict = load_checkpoint(cfg.finetune_ckpt) load_param_into_net(net, param_dict) model = Model(net) output = [] RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) columns_list = ["input_ids", "input_mask", "segment_ids", "unique_ids"] for data in dataset.create_dict_iterator(): input_data = [] for i in columns_list: input_data.append(Tensor(data[i])) input_ids, input_mask, segment_ids, unique_ids = input_data start_positions = Tensor([1], mstype.float32) end_positions = Tensor([1], mstype.float32) is_impossible = Tensor([1], mstype.float32) logits = model.predict(input_ids, input_mask, segment_ids, start_positions, end_positions, unique_ids, is_impossible) ids = logits[0].asnumpy() start = logits[1].asnumpy() end = logits[2].asnumpy() for i in range(bert_net_cfg.batch_size): unique_id = int(ids[i]) start_logits = [float(x) for x in start[i].flat] end_logits = [float(x) for x in end[i].flat] output.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json", None, None, False, False) if __name__ == "__main__": test_eval()