# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _executor from mindspore.nn import Cell from mindspore.ops import operations as P class Net(Cell): def __init__(self, mul_weight, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().set_strategy(strategy1) self.neg = P.Neg().set_strategy(strategy2) self.mul_weight = Parameter(mul_weight, "w1") def construct(self, x, b): out = self.mul(x, self.mul_weight) out = self.neg(out) return out class EvalNet(Cell): def __init__(self, network, strategy2=None): super().__init__() self.network = network self.relu = P.ReLU().set_strategy(strategy2) def construct(self, x, b): out = self.network(x, b) out = self.relu(out) return out _x = Tensor(np.ones([8, 8]), dtype=ms.float32) _w1 = Tensor(np.ones([8, 8]), dtype=ms.float32) _b = Tensor(np.ones([8, 8]), dtype=ms.float32) def test_train_and_eval(): context.set_context(save_graphs=True, mode=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) strategy1 = ((4, 4), (4, 4)) strategy2 = ((4, 4),) net = Net(_w1, strategy1, strategy2) eval_net = EvalNet(net, strategy2=strategy2) net.set_train() net.set_auto_parallel() _executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True) eval_net.set_train(mode=False) eval_net.set_auto_parallel() _executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True) context.reset_auto_parallel_context()