# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air and onnx models################# python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt """ import argparse import numpy as np from mindspore import Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export if __name__ == '__main__': parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], help='Model.') parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') args_opt = parser.parse_args() if args_opt.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet else: from src.squeezenet import SqueezeNet_Residual as squeezenet if args_opt.dataset == "cifar10": num_classes = 10 else: num_classes = 1000 onnx_filename = args_opt.net + '_' + args_opt.dataset air_filename = args_opt.net + '_' + args_opt.dataset net = squeezenet(num_classes=num_classes) assert args_opt.checkpoint_path is not None, "checkpoint_path is None." param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32)) export(net, input_arr, file_name=onnx_filename, file_format="ONNX") export(net, input_arr, file_name=air_filename, file_format="AIR")