# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, export from src.maskrcnn_mobilenetv1.mask_rcnn_mobilenetv1 import Mask_Rcnn_Mobilenetv1 from src.config import config parser = argparse.ArgumentParser(description="maskrcnn mobilnetv1 export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="maskrcnn_mobilenetv1", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': config.test_batch_size = args.batch_size net = Mask_Rcnn_Mobilenetv1(config) load_checkpoint(args.ckpt_file, net=net) net.set_train(False) img_data = Tensor(np.zeros([args.batch_size, 3, config.img_height, config.img_width], np.float16)) img_metas = Tensor(np.zeros([args.batch_size, 4], np.float16)) gt_bboxes = Tensor(np.zeros([args.batch_size, config.num_gts, 4], np.float16)) gt_labels = Tensor(np.zeros([args.batch_size, config.num_gts], np.int32)) gt_num = Tensor(np.zeros([args.batch_size, config.num_gts], np.bool)) gt_mask = Tensor(np.zeros([args.batch_size, 1, 1, 1], np.bool)) input_data = [img_data, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask] export(net, *input_data, file_name=args.file_name, file_format=args.file_format)