# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net_Pool_Grad(nn.Cell): def __init__(self): super(Net_Pool_Grad, self).__init__() self.maxpool_grad_fun = G.MaxPoolGrad(padding="VALID", ksize=2, strides=2) self.x = Parameter(initializer( Tensor(np.array([[[ [0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35] ]]]).astype(np.float32)), [1, 1, 6, 6]), name='x') self.a = Parameter(initializer( Tensor(np.array([[[ [3, 3, 3], [3, 3, 3], [3, 3, 3] ]]]).astype(np.float32)), [1, 1, 3, 3]), name='a') self.d = Parameter(initializer( Tensor(np.array([[[ [7, 9, 11], [19, 21, 23], [31, 33, 35] ]]]).astype(np.float32)), [1, 1, 3, 3]), name='d') def construct(self): return self.maxpool_grad_fun(self.x, self.a, self.d) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_maxpool2d_grad(): maxpool2d_grad = Net_Pool_Grad() output = maxpool2d_grad() print(output) expect_result = (np.array([[[ [0, 0, 0, 0, 0, 0], [0, 7, 0, 9, 0, 11], [0, 0, 0, 0, 0, 0], [0, 19, 0, 21, 0, 23], [0, 0, 0, 0, 0, 0], [0, 31, 0, 33, 0, 35] ]]])) assert (output.asnumpy() == expect_result).all()