# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test network turn on mix_precision.""" import pytest import numpy as np from mindspore import nn from mindspore import ops from mindspore import amp from mindspore import Tensor from mindspore import context from mindspore.train.loss_scale_manager import FixedLossScaleManager class Net(nn.Cell): def __init__(self, in_c, out_c): super().__init__() self.relu = nn.ReLU() self.bn1 = nn.BatchNorm2d(num_features=in_c, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', moving_var_init='ones') self.bn2 = nn.BatchNorm2d(num_features=out_c, gamma_init='ones', beta_init='zeros', moving_mean_init='zeros', moving_var_init='ones') self.conv = nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=3, stride=1, has_bias=True, pad_mode='same', weight_init='ones', bias_init='ones') self.mean = ops.ReduceMean(keep_dims=False) def construct(self, x): x = self.relu(x) x = self.bn1(x) x = self.conv(x) x = self.bn2(x) x = self.relu(x) x = self.mean(x, (2, 3)) return x @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_auto_mix_precision(): input_data = np.random.randn(32, 3, 224, 224).astype(np.float64) label_data = np.random.randn(32, 10).astype(np.float32) # graph mode context.set_context(mode=context.GRAPH_MODE) net = Net(3, 10) opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009, weight_decay=0.001, loss_scale=0.0001) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False) train_network = amp.build_train_network(net, opt, loss, level="O3", loss_scale_manager=FixedLossScaleManager(drop_overflow_update=False)) out = train_network(Tensor(input_data), Tensor(label_data)) # pynative mode context.set_context(mode=context.PYNATIVE_MODE) net_pynative = Net(3, 10) opt_pynative = nn.Momentum(params=net_pynative.trainable_params(), learning_rate=0.001, momentum=0.0009, weight_decay=0.001, loss_scale=0.0001) loss_pynative = nn.SoftmaxCrossEntropyWithLogits(sparse=False) train_network_pynative = amp.build_train_network(net_pynative, opt_pynative, loss_pynative, level="O3", loss_scale_manager=FixedLossScaleManager( drop_overflow_update=False)) out_pynative = train_network_pynative(Tensor(input_data), Tensor(label_data)) assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.001, 0.001)