# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetConv2d(nn.Cell): def __init__(self): super(NetConv2d, self).__init__() out_channel = 2 kernel_size = 1 self.conv = P.Conv2D(out_channel, kernel_size, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1) def construct(self, x, w): return self.conv(x, w) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_conv2d(): x = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)) w = Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32)) expect = np.array([[[[45, 48, 51], [54, 57, 60], [63, 66, 69]], [[126, 138, 150], [162, 174, 186], [198, 210, 222]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", max_device_memory="0.2GB") conv2d = NetConv2d() output = conv2d(x, w) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") conv2d = NetConv2d() output = conv2d(x, w) assert (output.asnumpy() == expect).all()