# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import random import json import grpc import numpy as np import requests import ms_service_pb2 import ms_service_pb2_grpc import mindspore.dataset as de from mindspore import Tensor, context from mindspore import log as logger from tests.st.networks.models.bert.src.bert_model import BertModel from .generate_model import bert_net_cfg context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") random.seed(1) np.random.seed(1) de.config.set_seed(1) def test_bert(): MAX_MESSAGE_LENGTH = 0x7fffffff input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) segment_ids = np.zeros((2, 32), dtype=np.int32) input_mask = np.zeros((2, 32), dtype=np.int32) # grpc visit channel = grpc.insecure_channel('localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH), ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)]) stub = ms_service_pb2_grpc.MSServiceStub(channel) request = ms_service_pb2.PredictRequest() x = request.data.add() x.tensor_shape.dims.extend([2, 32]) x.tensor_type = ms_service_pb2.MS_INT32 x.data = input_ids.tobytes() y = request.data.add() y.tensor_shape.dims.extend([2, 32]) y.tensor_type = ms_service_pb2.MS_INT32 y.data = segment_ids.tobytes() z = request.data.add() z.tensor_shape.dims.extend([2, 32]) z.tensor_type = ms_service_pb2.MS_INT32 z.data = input_mask.tobytes() result = stub.Predict(request) grpc_result = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims) print("ms grpc client received: ") print(grpc_result) # ms result net = BertModel(bert_net_cfg, False) bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask)) print("bert out: ") print(bert_out[0]) bert_out_size = len(bert_out) # compare grpc result for i in range(bert_out_size): grpc_result = np.frombuffer(result.result[i].data, dtype=np.float32).reshape(result.result[i].tensor_shape.dims) logger.info("i:{}, grpc_result:{}, bert_out:{}". format(i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape)) assert np.allclose(bert_out[i].asnumpy(), grpc_result, 0.001, 0.001, equal_nan=True) # http visit data = {"tensor": [input_ids.tolist(), segment_ids.tolist(), input_mask.tolist()]} url = "http://127.0.0.1:5501" input_json = json.dumps(data) headers = {'Content-type': 'application/json'} response = requests.post(url, data=input_json, headers=headers) result = response.text result = result.replace('\r', '\\r').replace('\n', '\\n') result_json = json.loads(result, strict=False) http_result = np.array(result_json['tensor']) print("ms http client received: ") print(http_result[0][:200]) # compare http result for i in range(bert_out_size): logger.info("i:{}, http_result:{}, bert_out:{}". format(i, np.shape(http_result[i]), bert_out[i].asnumpy().shape)) assert np.allclose(bert_out[i].asnumpy(), http_result[i], 0.001, 0.001, equal_nan=True)