# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """evaluate_imagenet""" import argparse import os import mindspore.nn as nn from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import config_gpu, config_ascend, config_cpu from src.dataset import create_dataset_imagenet, create_dataset_cifar10 from src.inception_v3 import InceptionV3 from src.loss import CrossEntropy_Val CFG_DICT = { "Ascend": config_ascend, "GPU": config_gpu, "CPU": config_cpu, } DS_DICT = { "imagenet": create_dataset_imagenet, "cifar10": create_dataset_cifar10, } if __name__ == '__main__': parser = argparse.ArgumentParser(description='image classification evaluation') parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of inception-v3 (Default: None)') parser.add_argument('--dataset_path', type=str, default='', help='Dataset path') parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU', 'CPU'), help='run platform') args_opt = parser.parse_args() if args_opt.platform == 'Ascend': device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) cfg = CFG_DICT[args_opt.platform] create_dataset = DS_DICT[cfg.ds_type] context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform) net = InceptionV3(num_classes=cfg.num_classes, is_training=False) ckpt = load_checkpoint(args_opt.checkpoint) load_param_into_net(net, ckpt) net.set_train(False) cfg.rank = 0 cfg.group_size = 1 dataset = create_dataset(args_opt.dataset_path, False, cfg) loss = CrossEntropy_Val(smooth_factor=0.1, num_classes=cfg.num_classes) eval_metrics = {'Loss': nn.Loss(), 'Top1-Acc': nn.Top1CategoricalAccuracy(), 'Top5-Acc': nn.Top5CategoricalAccuracy()} model = Model(net, loss, optimizer=None, metrics=eval_metrics) metrics = model.eval(dataset, dataset_sink_mode=cfg.ds_sink_mode) print("metric: ", metrics)