# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """FastText for Evaluation""" import argparse import numpy as np import mindspore.nn as nn import mindspore.common.dtype as mstype import mindspore.ops.operations as P from mindspore.common.tensor import Tensor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as deC from mindspore import context from src.fasttext_model import FastText parser = argparse.ArgumentParser(description='fasttext') parser.add_argument('--data_path', type=str, help='infer dataset path..') parser.add_argument('--data_name', type=str, required=True, default='ag', help='dataset name. eg. ag, dbpedia') parser.add_argument("--model_ckpt", type=str, required=True, help="existed checkpoint address.") args = parser.parse_args() if args.data_name == "ag": from src.config import config_ag as config target_label1 = ['0', '1', '2', '3'] elif args.data_name == 'dbpedia': from src.config import config_db as config target_label1 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13'] elif args.data_name == 'yelp_p': from src.config import config_yelpp as config target_label1 = ['0', '1'] context.set_context( mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend") class FastTextInferCell(nn.Cell): """ Encapsulation class of FastText network infer. Args: network (nn.Cell): FastText model. Returns: Tuple[Tensor, Tensor], predicted_ids """ def __init__(self, network): super(FastTextInferCell, self).__init__(auto_prefix=False) self.network = network self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True) self.log_softmax = nn.LogSoftmax(axis=1) def construct(self, src_tokens, src_tokens_lengths): """construct fasttext infer cell""" prediction = self.network(src_tokens, src_tokens_lengths) predicted_idx = self.log_softmax(prediction) predicted_idx, _ = self.argmax(predicted_idx) return predicted_idx def load_infer_dataset(batch_size, datafile, bucket): """data loader for infer""" def batch_per_bucket(bucket_length, input_file): input_file = input_file + '/test_dataset_bs_' + str(bucket_length) + '.mindrecord' if not input_file: raise FileNotFoundError("input file parameter must not be empty.") data_set = ds.MindDataset(input_file, columns_list=['src_tokens', 'src_tokens_length', 'label_idx']) type_cast_op = deC.TypeCast(mstype.int32) data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens") data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens_length") data_set = data_set.map(operations=type_cast_op, input_columns="label_idx") data_set = data_set.batch(batch_size, drop_remainder=False) return data_set for i, _ in enumerate(bucket): bucket_len = bucket[i] ds_per = batch_per_bucket(bucket_len, datafile) if i == 0: data_set = ds_per else: data_set = data_set + ds_per return data_set def run_fasttext_infer(): """run infer with FastText""" dataset = load_infer_dataset(batch_size=config.batch_size, datafile=args.data_path, bucket=config.test_buckets) fasttext_model = FastText(config.vocab_size, config.embedding_dims, config.num_class) parameter_dict = load_checkpoint(args.model_ckpt) load_param_into_net(fasttext_model, parameter_dict=parameter_dict) ft_infer = FastTextInferCell(fasttext_model) model = Model(ft_infer) predictions = [] target_sens = [] for batch in dataset.create_dict_iterator(output_numpy=True, num_epochs=1): target_sens.append(batch['label_idx']) src_tokens = Tensor(batch['src_tokens'], mstype.int32) src_tokens_length = Tensor(batch['src_tokens_length'], mstype.int32) predicted_idx = model.predict(src_tokens, src_tokens_length) predictions.append(predicted_idx.asnumpy()) from sklearn.metrics import accuracy_score, classification_report target_sens = np.array(target_sens).flatten() merge_target_sens = [] for target_sen in target_sens: merge_target_sens.extend(target_sen) target_sens = merge_target_sens predictions = np.array(predictions).flatten() merge_predictions = [] for prediction in predictions: merge_predictions.extend(prediction) predictions = merge_predictions acc = accuracy_score(target_sens, predictions) result_report = classification_report(target_sens, predictions, target_names=target_label1) print("********Accuracy: ", acc) print(result_report) if __name__ == '__main__': run_fasttext_infer()