# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Using for eval the model checkpoint""" import os import argparse from absl import logging from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore import context, Model import src.constants as rconst from src.dataset import create_dataset from src.metrics import NCFMetric from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap, PredictWithSigmoid from src.config import cfg logging.set_verbosity(logging.INFO) parser = argparse.ArgumentParser(description='NCF') parser.add_argument("--data_path", type=str, default="./dataset/") # The location of the input data. parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"]) # Dataset to be trained and evaluated. ["ml-1m", "ml-20m"] parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file. parser.add_argument("--eval_file_name", type=str, default="eval.log") # Eval output file. parser.add_argument("--checkpoint_file_path", type=str, default="./checkpoint/NCF-14_19418.ckpt") # The location of the checkpoint file. args, _ = parser.parse_known_args() def test_eval(): """eval method""" if not os.path.exists(args.output_path): os.makedirs(args.output_path) layers = cfg.layers num_factors = cfg.num_factors topk = rconst.TOP_K num_eval_neg = rconst.NUM_EVAL_NEGATIVES ds_eval, num_eval_users, num_eval_items = create_dataset(test_train=False, data_dir=args.data_path, dataset=args.dataset, train_epochs=0, eval_batch_size=cfg.eval_batch_size) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) ncf_net = NCFModel(num_users=num_eval_users, num_items=num_eval_items, num_factors=num_factors, model_layers=layers, mf_regularization=0, mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], mf_dim=16) param_dict = load_checkpoint(args.checkpoint_file_path) load_param_into_net(ncf_net, param_dict) loss_net = NetWithLossClass(ncf_net) train_net = TrainStepWrap(loss_net) # train_net.set_train() eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg) ncf_metric = NCFMetric() model = Model(train_net, eval_network=eval_net, metrics={"ncf": ncf_metric}) ncf_metric.clear() out = model.eval(ds_eval) eval_file_path = os.path.join(args.output_path, args.eval_file_name) eval_file = open(eval_file_path, "a+") eval_file.write("EvalCallBack: HR = {}, NDCG = {}\n".format(out['ncf'][0], out['ncf'][1])) eval_file.close() print("EvalCallBack: HR = {}, NDCG = {}".format(out['ncf'][0], out['ncf'][1])) if __name__ == '__main__': devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Davinci", save_graphs=True, device_id=devid) test_eval()