# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air , mindir and onnx models################# python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt """ import argparse import numpy as np from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export parser = argparse.ArgumentParser(description='checkpoint export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=32, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument('--width', type=int, default=227, help='input width') parser.add_argument('--height', type=int, default=227, help='input height') parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], help='Model.') parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') parser.add_argument("--file_name", type=str, default="squeezenet", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() if args.net == "squeezenet": from src.squeezenet import SqueezeNet as squeezenet else: from src.squeezenet import SqueezeNet_Residual as squeezenet if args.dataset == "cifar10": num_classes = 10 else: num_classes = 1000 context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': net = squeezenet(num_classes=num_classes) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) input_data = Tensor(np.zeros([args.batch_size, 3, args.height, args.width], np.float32)) export(net, input_data, file_name=args.file_name, file_format=args.file_format)