# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test sparse feature bprop """ import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import context from mindspore.common import dtype as mstype from mindspore.common.tensor import Tensor, IndexedSlices from mindspore.ops import composite as C, operations as P from mindspore.ops.operations.comm_ops import AllReduce, _MirrorOperator from mindspore.ops._grad.grad_base import bprop_getters from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer from mindspore.common.api import _executor from mindspore.communication.management import HCCL_WORLD_COMM_GROUP class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return C.grad_all(self.network)(x) class VirtualGatherV2(PrimitiveWithInfer): @prim_attr_register def __init__(self): """init index_select""" super(VirtualGatherV2, self).__init__('VirtualGatherV2') self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output']) def __infer__(self, params, indices, axis): validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) validator.check_tensor_type_same({"indices": indices['dtype']}, mstype.int_type, self.name) validator.check_subclass("axis", axis['dtype'], mstype.int_, self.name) axis_v = axis['value'] params_shp = params['shape'] rank = len(params_shp) validator.check_int_range("axis", axis_v, -rank, rank, Rel.INC_LEFT, self.name) if axis_v < 0: axis_v += rank out_shape = params_shp[:axis_v] + indices['shape'] + params_shp[axis_v + 1:] out = {'shape': out_shape, 'dtype': params['dtype'], 'value': None} return out @bprop_getters.register(VirtualGatherV2) def get_bprop_gather_v2(self): """Generate bprop for GatherV2""" def bprop(x, indices, axis, out, dout): return IndexedSlices(indices, dout, x), axis, out return bprop def test_bprop_with_sparse_feature_allreduce(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="hybrid_parallel") class Net(nn.Cell): def __init__(self, axis=0, shape=None): super(Net, self).__init__() if shape is None: shape = [8, 8] self.all_reduce = AllReduce() self.gatherv2 = P.GatherV2() self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis def construct(self, x): out = self.all_reduce(x) out = self.gatherv2(out, self.index, self.axis) return out net = GradWrap(Net()) x = Tensor(np.ones([64, 64]), dtype=ms.float32) _executor.compile(net, x) def test_bprop_with_sparse_feature_mirror(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="hybrid_parallel") class Net(nn.Cell): def __init__(self, axis=0, shape=None): super(Net, self).__init__() if shape is None: shape = [8, 8] self.mirror = _MirrorOperator(group=HCCL_WORLD_COMM_GROUP) self.gatherv2 = P.GatherV2() self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis def construct(self, x): out = self.mirror(x) out = self.gatherv2(out, self.index, self.axis) return out net = GradWrap(Net()) x = Tensor(np.ones([64, 64]), dtype=ms.float32) _executor.compile(net, x)