# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest import mindspore.dataset as ds from mindspore import log as logger # test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631] # the label of each image is [0,0,0,1,1] each image can be uniquely identified # via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4} def test_sequential_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(num_samples, num_repeats=None): sampler = ds.SequentialSampler(num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) if num_repeats is not None: data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2] assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2 assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2 def test_random_sampler(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(): res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) return res # this tests that each epoch COULD return different samples than the previous epoch assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2 # the following two tests test replacement works ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res def test_random_sampler_multi_iter(print_res=False): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(replacement, num_samples, num_repeats, validate): sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) while num_repeats > 0: res = [] for item in data1.create_dict_iterator(): res.append(map_[(item["image"].shape[0], item["label"].item())]) if print_res: logger.info("image.shapes and labels: {}".format(res)) if validate != sorted(res): break num_repeats -= 1 assert num_repeats > 0 test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5]) def test_sampler_py_api(): sampler = ds.SequentialSampler().create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() sampler = ds.RandomSampler().create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() sampler = ds.DistributedSampler(8, 4).create() sampler.set_num_rows(128) sampler.set_num_samples(64) sampler.initialize() sampler.get_indices() def test_python_sampler(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} class Sp1(ds.Sampler): def __iter__(self): return iter([i for i in range(self.dataset_size)]) class Sp2(ds.Sampler): def __init__(self, num_samples=None): super(Sp2, self).__init__(num_samples) # at this stage, self.dataset_size and self.num_samples are not yet known self.cnt = 0 def __iter__(self): # first epoch, all 0, second epoch all 1, third all 2 etc.. ... return iter([self.cnt for i in range(self.num_samples)]) def reset(self): self.cnt = (self.cnt + 1) % self.dataset_size def test_config(num_repeats, sampler): data1 = ds.ManifestDataset(manifest_file, sampler=sampler) if num_repeats is not None: data1 = data1.repeat(num_repeats) res = [] for item in data1.create_dict_iterator(): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) # print(res) return res def test_generator(): class MySampler(ds.Sampler): def __iter__(self): for i in range(99, -1, -1): yield i data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler=MySampler()) i = 99 for data in data1: assert data[0] == (np.array(i),) i = i - 1 assert test_config(2, Sp1(5)) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] assert test_config(6, Sp2(2)) == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0] test_generator() sp1 = Sp1().create() sp1.set_num_rows(5) sp1.set_num_samples(5) sp1.initialize() assert list(sp1.get_indices()) == [0, 1, 2, 3, 4] def test_subset_sampler(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(start_index, num_samples): sampler = ds.SequentialSampler(start_index, num_samples) d = ds.ManifestDataset(manifest_file, sampler=sampler) res = [] for item in d.create_dict_iterator(): res.append(map_[(item["image"].shape[0], item["label"].item())]) return res assert test_config(0, 1) == [0] assert test_config(0, 2) == [0, 1] assert test_config(0, 3) == [0, 1, 2] assert test_config(0, 4) == [0, 1, 2, 3] assert test_config(0, 5) == [0, 1, 2, 3, 4] assert test_config(1, 1) == [1] assert test_config(2, 3) == [2, 3, 4] assert test_config(3, 2) == [3, 4] assert test_config(4, 1) == [4] def test_sampler_chain(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} def test_config(num_shards, shard_id): sampler = ds.DistributedSampler(num_shards, shard_id, shuffle=False, num_samples=5) child_sampler = ds.SequentialSampler() sampler.add_child(child_sampler) data1 = ds.ManifestDataset(manifest_file, sampler=sampler) res = [] for item in data1.create_dict_iterator(): logger.info("item[image].shape[0]: {}, item[label].item(): {}" .format(item["image"].shape[0], item["label"].item())) res.append(map_[(item["image"].shape[0], item["label"].item())]) return res assert test_config(2, 0) == [0, 2, 4] assert test_config(2, 1) == [1, 3, 0] assert test_config(5, 0) == [0] assert test_config(5, 1) == [1] assert test_config(5, 2) == [2] assert test_config(5, 3) == [3] assert test_config(5, 4) == [4] def test_add_sampler_invalid_input(): manifest_file = "../data/dataset/testManifestData/test5trainimgs.json" _ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4} data1 = ds.ManifestDataset(manifest_file) with pytest.raises(TypeError) as info: data1.use_sampler(1) assert "not an instance of a sampler" in str(info.value) with pytest.raises(TypeError) as info: data1.use_sampler("sampler") assert "not an instance of a sampler" in str(info.value) sampler = ds.SequentialSampler() with pytest.raises(ValueError) as info: data2 = ds.ManifestDataset(manifest_file, sampler=sampler, num_samples=20) assert "Conflicting arguments during sampler assignments" in str(info.value) if __name__ == '__main__': test_sequential_sampler(True) test_random_sampler(True) test_random_sampler_multi_iter(True) test_sampler_py_api() test_python_sampler() test_subset_sampler() test_sampler_chain() test_add_sampler_invalid_input()