# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """evaluation.""" import argparse from mindspore import context from mindspore import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.md_dataset import create_dataset from src.losses import OhemLoss from src.miou_precision import MiouPrecision from src.deeplabv3 import deeplabv3_resnet50 from src.config import config parser = argparse.ArgumentParser(description="Deeplabv3 evaluation") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument('--data_url', required=True, default=None, help='Evaluation data url') parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) print(args_opt) if __name__ == "__main__": args_opt.crop_size = config.crop_size args_opt.base_size = config.crop_size eval_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="eval") net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size], infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) param_dict = load_checkpoint(args_opt.checkpoint_url) load_param_into_net(net, param_dict) mIou = MiouPrecision(config.seg_num_classes) metrics = {'mIou': mIou} loss = OhemLoss(config.seg_num_classes, config.ignore_label) model = Model(net, loss, metrics=metrics) model.eval(eval_dataset)